Experimental investigation of the effects of temperature and nanoparticles volume fraction on the viscosity of non-Newtonian hybrid nanofluid

Hamed Eshgari, Masoud Afrand*, Mohammad Hemmat Esfe

Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
* P.O.B. 8514143131 Najafabad, Iran, masoud.afrand@pmc.iaun.ac.ir

Abstract

In this paper, the effects of temperature and nanoparticles volume fraction on the viscosity of non-Newtonian hybrid nanofluid, containing water and ethylene glycol as a base fluid and multi-walled carbon nanotubes (MWCNTs) and silica (SiO2) as additives, have been investigated experimentally. The measurements have been carried out in temperatures range of 27.5°C - 50°C by using a Brookfield DV-I PRIME digital Viscometer for different shear rates. The stable and homogeneous samples, with the solid volume fractions of 0.0625%, 0.25%, 0.5%, 0.75%, 1%, 1.5% and 2%, were prepared by dispersing equal volumes of dry MWCNTs and SiO2 nanoparticles in a specified amount of the binary mixture of water/EG (50:50 %vol.). The measurement results at different shear rates showed that the base fluid possessed Newtonian behavior, while all nanofluid samples exhibit a pseudoplastic rheological behavior with a power law index of less than unity (n<1). Moreover, the consistency index and power law index have been obtained by accurate curve-fitting for all nanofluid samples. The results also revealed that the apparent viscosity generally increases with an increase in the solid volume fraction and decreases with rising temperature.

Keywords:
Viscosity
Hybrid nanofluid
Non-Newtonian behavior
Experimental investigation

Please cite this article using:

Received [] 2016
Accepted [] 2016
Available Online [] 2016

Original Research Paper

Article Information
2 انجام آزمایش

1-2 فاقد نانوی مواد

الاکسیپال گرین و چهار (2015) در سال ۱۰۰۱ در تریالی گردیده که نانواژه‌ای بود که بی‌شک کثرت نانوی مواد به ترتیب از دو و یک دوم مقدار مثلاً در مواردی مانند پیشرفت در نانو بروز بخش‌ها، به مدت ۳۰ دقیقه در برابر دمای مورد بررسی قرار داده شدند.

2-3 فاقد نانوی مواد

از آنجایی که نانواژه‌ای بود که بی‌شک کثرت نانوی مواد به ترتیب از دو و یک دوم مقدار مثلاً در مواردی مانند پیشرفت در نانو بروز بخش‌ها، به مدت ۳۰ دقیقه در برابر دمای مورد بررسی قرار داده شدند.

3-4 فاقد نانوی مواد

از آنجایی که نانواژه‌ای بود که بی‌شک کثرت نانوی مواد به ترتیب از دو و یک دوم مقدار مثلاً در مواردی مانند پیشرفت در نانو بروز بخش‌ها، به مدت ۳۰ دقیقه در برابر دمای مورد بررسی قرار داده شدند.

4-5 فاقد نانوی مواد

از آنجایی که نانواژه‌ای بود که بی‌شک کثرت نانوی مواد به ترتیب از دو و یک دوم مقدار مثلاً در مواردی مانند پیشرفت در نانو بروز بخش‌ها، به مدت ۳۰ دقیقه در برابر دمای مورد بررسی قرار داده شدند.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

<table>
<thead>
<tr>
<th>فاقد نانوی مواد</th>
<th>درصد %</th>
<th>درصد %</th>
<th>درصد %</th>
<th>درصد %</th>
</tr>
</thead>
<tbody>
<tr>
<td>سیلیکا (SE)</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
</tr>
<tr>
<td>اکسید سیسیلیک</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
</tr>
<tr>
<td>اکسید آلومینیوم</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
</tr>
<tr>
<td>اکسید آهن</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
<td>۲۰-۳۰</td>
</tr>
</tbody>
</table>

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای نانواژه‌ای بسیار متفاوت بود.

جدول ۱: جدولی از اتحادیه به طور منظم برای Nانواژه‌ای بسیار متفاوت بود.
Table 4 Amounts of MWCNTs and SiO₂ nanoparticles for preparing the samples

<table>
<thead>
<tr>
<th></th>
<th>MWCNTs</th>
<th>SiO₂</th>
<th>Red (%)</th>
<th>Kør (µm)</th>
<th>Krør (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6</td>
<td>14.4</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9.4</td>
<td>10.8</td>
<td>1.5</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>7.2</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>5.4</td>
<td>0.75</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>3.6</td>
<td>0.5</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.57</td>
<td>1.8</td>
<td>0.25</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>0.43</td>
<td>0.0625</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Characteristics of MWCNTs and SiO₂ nanoparticles

<table>
<thead>
<tr>
<th>Property</th>
<th>MWCNTs</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Specific heat</td>
<td>20-30 (nm)</td>
<td>80</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1500</td>
<td>1.3</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>233</td>
<td>180-600</td>
</tr>
</tbody>
</table>

Table 3 Characteristics of water and ethylene glycol

<table>
<thead>
<tr>
<th>Property</th>
<th>Water (H₂O)</th>
<th>Ethylene glycol (C₃H₈O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.0625</td>
<td>1.1132</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.00</td>
<td>12.9</td>
</tr>
<tr>
<td>Viscosity</td>
<td>100</td>
<td>197.3</td>
</tr>
<tr>
<td>Viscosity</td>
<td>10</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Fig. 1 Photographs of MWCNTs, SiO₂ nanoparticles, EG and prepared nanofluid

Fig. 2 Measurement of viscosity using Brookfield DV-I PRIME digital Viscometer equipped with a temperature bath

Shape 2 is used to measure viscosity with different temperatures.

Shape 2 is used to measure viscosity with different temperatures.

- Table 2
- Table 3
- Table 4

Table 2 Characteristics of MWCNTs and SiO₂ nanoparticles

<table>
<thead>
<tr>
<th>Property</th>
<th>MWCNTs</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Specific heat</td>
<td>20-30 (nm)</td>
<td>80</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1500</td>
<td>1.3</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>233</td>
<td>180-600</td>
</tr>
</tbody>
</table>

Table 3 Characteristics of water and ethylene glycol

<table>
<thead>
<tr>
<th>Property</th>
<th>Water (H₂O)</th>
<th>Ethylene glycol (C₃H₈O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.0625</td>
<td>1.1132</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.00</td>
<td>12.9</td>
</tr>
<tr>
<td>Viscosity</td>
<td>100</td>
<td>197.3</td>
</tr>
<tr>
<td>Viscosity</td>
<td>10</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Table 2 Characteristics of MWCNTs and SiO₂ nanoparticles

<table>
<thead>
<tr>
<th>Property</th>
<th>MWCNTs</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Specific heat</td>
<td>20-30 (nm)</td>
<td>80</td>
</tr>
<tr>
<td>Viscosity</td>
<td>1500</td>
<td>1.3</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>233</td>
<td>180-600</td>
</tr>
</tbody>
</table>

Table 3 Characteristics of water and ethylene glycol

<table>
<thead>
<tr>
<th>Property</th>
<th>Water (H₂O)</th>
<th>Ethylene glycol (C₃H₈O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.0625</td>
<td>1.1132</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.00</td>
<td>12.9</td>
</tr>
<tr>
<td>Viscosity</td>
<td>100</td>
<td>197.3</td>
</tr>
<tr>
<td>Viscosity</td>
<td>10</td>
<td>0.224</td>
</tr>
</tbody>
</table>
Fig. 3 Viscosity versus shear rate for base fluid at different temperatures

Fig. 4 Shear stress versus shear rate for base fluid at different temperatures

Table 5 Amounts of FSR and error for solid volume fraction of 0.0625% at temperature of 27.5°C and various rotational speeds (RPM)
Fig. 6 Shear stress versus shear rate for solid volume fraction of 0.0625% at different temperatures

Fig. 7 Viscosity versus shear rate for solid volume fraction of 1% at different temperatures

Fig. 8 Shear stress versus shear rate for solid volume fraction of 1% at different temperatures

Fig. 9 Curve-fitting results for nanofluid with solid volume fraction of 0.5% at different temperatures

Curve-fitting

Experimental data @ 30°C

Experimental data @ 45°C

$\tau = m \gamma^n$

$\mu = m \gamma^{n-1}$

$R^2 = 0.9991$

$m = 0.1365$

$n = 0.4702$

$R^2 = 0.9960$

$m = 0.0896$

$n = 0.5014$

τ = shear stress (Pa)

γ = shear rate (s$^{-1}$)

m and n are constants

μ = apparent viscosity (mPas)

T = temperature (°C)

1. Consistency index
2. Power law index
3. Apparent viscosity
جدول 6: سطح‌های مدل قاده‌های پرتوی و در جریان

<table>
<thead>
<tr>
<th>جرم (kg)</th>
<th>شرایط استحکام سیال (m Pas)</th>
<th>m</th>
<th>n</th>
<th>R²</th>
<th>دما (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0625</td>
<td>0.013</td>
<td>0.8378</td>
<td>0.9994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.0526</td>
<td>0.6061</td>
<td>0.9985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.2168</td>
<td>0.5508</td>
<td>0.9984</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.0943</td>
<td>0.5136</td>
<td>0.9983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.4372</td>
<td>0.4653</td>
<td>0.9985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.5417</td>
<td>0.4807</td>
<td>0.9999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ناونیال و در هر دمای دما در صورت داده‌ها به دست آمده، مقایسه‌ها نشان داد که برای مشین‌های انجم شده مدل دقیقه است.

4- نتیجه‌گیری

در این پژوهش لزج نانوسیال با کسر جرمی‌های 0.0625% در 1.5%، 0.075%، 0.05% و 0.025% در نرخ برای هر دما معنادار بود.

5- فهرست عالم

m: شرایط استحکام سیال (m Pas)
n: شرایط برخی (kgm⁻¹s⁻¹)
R²: معناداری شرایط سیال برای روز دیگر

(μ) لزج دمای‌های (Pa.s)
(η) چاپ (kgm⁻¹s⁻¹)
(ν) نسبت برخی (μs⁻¹)

