1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Physical Review Letters. 1986;56(9):930. [
Link] [
DOI:10.1103/PhysRevLett.56.930]
2. Fang TH, Chang WJ, Weng CI. Nanoindentation and nanomachining characteristics of gold and platinum thin films. Materials Science and Engineering: A. 2006;430(1-2):332-340. [
Link] [
DOI:10.1016/j.msea.2006.05.106]
3. Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJ, et al. Atomic force microscopy-based mechanobiology. Nature Reviews Physics. 2019;1:41-57. [
Link] [
DOI:10.1038/s42254-018-0001-7]
4. Rodriguez BJ, Callahan C, Kalinin SV, Proksch R. Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology. 2007;18(47):475504. [
Link] [
DOI:10.1088/0957-4484/18/47/475504]
5. Mazeran PE, Loubet JL. Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribology Letters. 1999;7(4):199-212. [
Link] [
DOI:10.1023/A:1019142025011]
6. Chong AC, Lam DCC. Strain gradient plasticity effect in indentation hardness of polymers. Journal of Materials Research. 1999;14(10):4103-4110. [
Link] [
DOI:10.1557/JMR.1999.0554]
7. Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. International Journal of Engineering Science. 1972;10(5):425-435. [
Link] [
DOI:10.1016/0020-7225(72)90050-X]
8. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics. 1983;54(9):4703-4710. [
Link] [
DOI:10.1063/1.332803]
9. Reddy JN. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science. 2007;45(2-8):288-307. [
Link] [
DOI:10.1016/j.ijengsci.2007.04.004]
10. Murmu T, Pradhan S. Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory. Physica E: Low-dimensional Systems and Nanostructures. 2009;41(8):1451-1456. [
Link] [
DOI:10.1016/j.physe.2009.04.015]
11. Mir M, Tahani M. Chaotic behavior of nonlocal nanobeam resting on a nonlinear viscoelastic foundation subjected to harmonic excitation. Modares Mechanical Engineering. 2018;18(2):264-272. [Persian] [
Link]
12. Yang F, Chong A, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures. 2002;39(10):2731-2743. [
Link] [
DOI:10.1016/S0020-7683(02)00152-X]
13. Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids. 2003;51(8):1477-1508. [
Link] [
DOI:10.1016/S0022-5096(03)00053-X]
14. Kong S, Zhou S, Nie Z, Wang K. The size-dependent natural frequency of Bernoulli-Euler micro-beams. International Journal of Engineering Science. 2008;46(5):427-437. [
Link] [
DOI:10.1016/j.ijengsci.2007.10.002]
15. Xia W, Wang L, Yin L. Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration. International Journal of Engineering Science. 2010;48(12):2044-2053. [
Link] [
DOI:10.1016/j.ijengsci.2010.04.010]
16. Kahrobaiyan MH, Asghari M, Rahaeifard M, Ahmadian MT. A nonlinear strain gradient beam formulation. International Journal of Engineering Science. 2011;49(11):1256-1267. [
Link] [
DOI:10.1016/j.ijengsci.2011.01.006]
17. Ghayesh MH, Farokhi H, Amabili M. In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Composites Part B: Engineering. 2014;60:423-439. [
Link] [
DOI:10.1016/j.compositesb.2013.12.074]
18. Andakhshideh A, Maleki S, Karamad H. Size-dependent nonlinear vibration of non-uniform microbeam with various boundary conditions. Modares Mechanical Engineering. 2019;18(9):189-198. [Persian] [
Link]
19. Thai HT, Vo TP, Nguyen TK, Kim SE. A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Structures. 2017;177:196-219. [
Link] [
DOI:10.1016/j.compstruct.2017.06.040]
20. Eltaher MA, Khater ME, Emam SA. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling. 2016;40(5-6):4109-4128. [
Link] [
DOI:10.1016/j.apm.2015.11.026]
21. Farshidianfar A, Mahdavi MH, Dalir H. Flexural vibration of atomic force microscope cantilever with dimensional effects. Amirkabir Journal of Mechanical Engineering. 2009;41(1):19-26. [Persian] [
Link]
22. Rützel S, Lee SI, Raman A. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2003;459(2036):1925-1948. [
Link] [
DOI:10.1098/rspa.2002.1115]
23. Pishkenari HN, Behzad M, Meghdari A. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation. Chaos, Solitons & Fractals. 2008;37(3):748-762. [
Link] [
DOI:10.1016/j.chaos.2006.09.079]
24. Morita S, Giessibl FJ, Meyer E, Wiesendanger R, editors. Noncontact atomic force microscopy. Volume 3. Switzerland: Springer; 2015. [
Link] [
DOI:10.1007/978-3-319-15588-3]
25. Bueno AM, Balthazar JM, Piqueira JRC. Phase-locked loop application to frequency modulation-atomic force microscope. Communications in Nonlinear Science and Numerical Simulation. 2011;16(9):3835-3843. [
Link] [
DOI:10.1016/j.cnsns.2010.12.018]
26. Rezaie B, Nikoo SY, Rahmani Z. A novel intelligent fast terminal sliding mode control for a class of nonlinear systems: application to atomic force microscope. International Journal of Dynamics and Control. 2018;6(3):1335-1350. [
Link] [
DOI:10.1007/s40435-017-0376-9]
27. Karami Mohammadi A, Abbasi M. Vibration analysis of an AFM microcantilever with sidewall and top surface probes based on the couple stress theory. Amirkabir Journal of Mechanical Engineering. 2016;48(2):137-146. [Persian] [
Link]
28. Karami Mohammadi A, Abbasi M. Nonlinear vibration analysis of a dynamic atomic force microscope microcantilever in the tapping mode based on the modified couple stress theory. Modares Mechanical Engineering. 2015;14(11):9-17. [Persian] [
Link]
29. Molavian Jazi M, Ghayour M, Ziaei-Rad S, Miandoab EM. Effect of size on the dynamic behaviors of atomic force microscopes. Microsystem Technologies. 2018;24(4):1755-1765. [
Link] [
DOI:10.1007/s00542-017-3698-9]
30. Mohammadi MA, Yousefi Koma A, Karimpour M, Maani Miandoab E. Dynamic behavior analysis of atomic force microscope based on gradient theory. Modares Mechanical Engineering. 2016;16(9):155-164. [Persian] [
Link]
31. Saeedi B, Vatankhah R. Nonlinear dynamic analysis of an atomic force microscope submerged in liquid based on strain gradient theory. Modares Mechanical Engineering. 2018;17(12):275-285. [Persian] [
Link]
32. Nayfeh AH, Mook DT. Nonlinear oscillations. Birkach: John Wiley & Sons; 2008. [
Link]
33. Poursamad A, Davaie-Markazi AH. Robust adaptive fuzzy control of unknown chaotic systems. Applied Soft Computing. 2009;9(3):970-976. [
Link] [
DOI:10.1016/j.asoc.2008.11.014]
34. Rao SS. Vibration of continuous systems. Hoboken: John Wiley & Sons; 2007. [
Link]
35. Rützel S, Lee SI, Raman A, editors. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2003;459(2036):1925-1948. [
Link] [
DOI:10.1098/rspa.2002.1115]
36. Wolf A, Swift JB, Swinney HL, Vastano JA. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena. 1985;16(3):285-317. [
Link] [
DOI:10.1016/0167-2789(85)90011-9]