Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 999-1009 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi M, Falavandi H, Karami Moghadam M, Shaikh Mohammad Meiabadi M. Experimental Investigation of Laser Cutting Post Process of Additive Manufactured Parts of Poly Lactic Acid (PLA) by 3D Printers Using FDM Method. Modares Mechanical Engineering 2020; 20 (4) :999-1009
URL: http://mme.modares.ac.ir/article-15-31700-en.html
1- , moradi@malayeru.ac.ir
2- Mechanical Engineering Department, Engineering Faculty, University of Quebec, Montreal, Canada
Abstract:   (6741 Views)

3D printing technology is used in a variety of industries without auxiliary tools because it is flexible in producing and reduces the waste of material. In this paper, the laser cutting process of polylactic acid sheets has been investigated by a 3D printer. The fused deposition modeling (FDM) method was used for printing the sheets. Production of sheets with a thickness of 2.3 mm by optimal conditions was conducted (each layer was perfectly solid with a thickness of 0.27 mm, and the extruder temperature of 226.62 °C). The laser used in this paper is a CO2 low-power, continuous-wave laser. Laser input parameters including laser cutting speed, focal point position, and laser power were selected as the variables. By performing several experiments, the effective range of each parameter was evaluated. The upper and lower cut width, the angle of cone and the upper cut width ratio to the lower cut width of the process output parameters were selected. The optical microscope was used to examine the geometric characteristics of cutting kerf of the samples and then the images were measured using ImageJ software. The purpose of this paper is the laser cutting process to achieve cutting kerfs with good quality and proper setting of laser input parameters.

Full-Text [PDF 807 kb]   (4033 Downloads)    
Article Type: Original Research | Subject: Build add-on
Received: 2019/04/4 | Accepted: 2019/09/15 | Published: 2020/04/17

References
1. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: A critical review. The International Journal of Advanced Manufacturing Technology. 2016;83:389-405. [Link] [DOI:10.1007/s00170-015-7576-2]
2. Moradi M, Meiabadi S, Kaplan A. 3D Printed parts with honeycomb internal pattern by fused deposition modelling, experimental characterization and production optimization. Metals and Materials International. 2019;25:1312-1325. [Link] [DOI:10.1007/s12540-019-00272-9]
3. Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Advances in Manufacturing. 2015;3:42-53. [Link] [DOI:10.1007/s40436-014-0097-7]
4. Golchin Bidgoli E, Moradi M, Shamsaei S. Laser drilling simulation of glass by using finite element method and selecting the suitable Gaussian distribution. Modares Mechanical Engineering. 2015;15(20):416-420. [Persian] [Link]
5. Moradi M, Ghorbani D, Karami Moghadam M, Kazazi M, Rouzbahani F, et al. Nd:YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. Journal of Alloys and Compounds. 2019;795:213-222. [Link] [DOI:10.1016/j.jallcom.2019.05.016]
6. Moradi M, Karami Moghadam M, Kazazi M. Improved laser surface hardening of AISI 4130 low alloy steel with electrophoretically deposited carbon coating. Optik. 2019;178:614-622. [Link] [DOI:10.1016/j.ijleo.2018.10.036]
7. Moradi M, Ghoreishi M, Khorram A. Process and outcome comparison between laser, tungsten inert gas (TIG) and laser-TIG hybrid welding. Lasers in Engineering. 2018;39(3-6):379-391. [Link]
8. Safari M, Farzin M. Experimental investigation of laser forming of a saddle shape with spiral irradiating scheme. Optics & Laser Technology. 2015;66:146-150. [Link] [DOI:10.1016/j.optlastec.2014.09.003]
9. Safari M, Farzin M, Mostaan H. A novel method for laser forming of two-step bending of a dome shaped part. Iranian Journal of Materials Forming. 2017;4(2):1-14. [Link]
10. Safari M. A novel and comprehensive method for laser forming of cylindrical surfaces with arbitrary radius of curvature. Modares Mechanical Engineering. 2016;15(12):9-16. [Persian] [Link]
11. Safari M, Mostaan H. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature. Alexandria Engineering Journal. 2016;55(3):1941-1949. [Link] [DOI:10.1016/j.aej.2016.07.033]
12. Moradi M, Karami Moghadam M, Zarei J, Ganji B. The effects of laser pulse energy and focal point position on laser surface hardening of AISI 410 stainless steel. Modares Mechanical Engineering. 2017;17(6):311-318. [Persian] [Link]
13. Niziev VG, Nesterov AV. Influence of beam polarization on laser cutting efficiency. Journal of Physics D: Applied Physics. 1999;32:1455-1462. [Link] [DOI:10.1088/0022-3727/32/13/304]
14. Haddadi E, Moradi M, Karimzad Ghavidel A, Karimzad Ghavidel A, Meiabadi S. Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene. Optik. 2019;184:103-114. [Link] [DOI:10.1016/j.ijleo.2019.03.040]
15. Dorgan JR, Lehermeier H, Mang M. Thermal and rheological properties of commercial-grade poly(lactic acid)s. Journal of Polymers and the Environment. 2000;8:1-9. [Link] [DOI:10.1023/A:1010185910301]
16. Oksman K, Skrifvars M, Selin JF. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology. 2003;63(9):1317-1324. [Link] [DOI:10.1016/S0266-3538(03)00103-9]
17. Le Coz G, Fischer M, Piquard R, D'Acunto A, Laheurte P, Dudzinski D. Micro cutting of Ti-6Al-4V parts produced by SLM process. Procedia CIRP. 2017;58:228-232. [Link] [DOI:10.1016/j.procir.2017.03.326]
18. Kasuga T, Ota Y, Nogami M, Abe Y. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers. Biomaterials. 2000;22(1):19-23. [Link] [DOI:10.1016/S0142-9612(00)00091-0]
19. Ahn SH, Montero M, Odell D, Roundy S, Wright PK. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal. 2002;8(4):248-257. [Link] [DOI:10.1108/13552540210441166]
20. Zhang Y, Chou K. A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008;222(8):959-968. [Link] [DOI:10.1243/09544054JEM990]
21. Boschetto A, Giordano V, Veniali F. Modelling micro geometrical profiles in fused deposition process. The International Journal of Advanced Manufacturing Technology. 2012;61(9-12):945-956. [Link] [DOI:10.1007/s00170-011-3744-1]
22. Kantaros A, Karalekas D. Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process. Materials & Design. 2013;50:44-50. [Link] [DOI:10.1016/j.matdes.2013.02.067]
23. Tymrak BM, Kreiger M, Pearce JM. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design. 2014;58:242-246. [Link] [DOI:10.1016/j.matdes.2014.02.038]
24. Mori KI, Maeno T, Nakagawa Y. Dieless forming of carbon fibre reinforced plastic parts using 3D printer. Procedia Engineering. 2014;81:1595-1600. [Link] [DOI:10.1016/j.proeng.2014.10.196]
25. Peng A, Xiao X, Yue R. Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. The International Journal of Advanced Manufacturing Technology. 2014;73:87-100. [Link] [DOI:10.1007/s00170-014-5796-5]
26. Rayegani F, Onwubolu GC. Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). The International Journal of Advanced Manufacturing Technology. 2014;73:509-519. [Link] [DOI:10.1007/s00170-014-5835-2]
27. Xinhua L, Shengpeng L, Zhou L, Xianhua Z, Xiaohu C, Zhongbin W. An investigation on distortion of PLA thin-plate part in the FDM process. The International Journal of Advanced Manufacturing Technology. 2015;79:1117-1126. [Link] [DOI:10.1007/s00170-015-6893-9]
28. Boschetto A, Bottini L, Veniali F. Finishing of fused deposition modeling parts by CNC machining. Robotics and Computer-Integrated Manufacturing. 2016;41:92-101. [Link] [DOI:10.1016/j.rcim.2016.03.004]
29. Reyes-Rodríguez A, Dorado-Vicente R, Mayor-Vicario R. Dimensional and form errors of PC parts printed via fused deposition modelling. Procedia Manufacturing. 2017;13:880-887. [Link] [DOI:10.1016/j.promfg.2017.09.149]
30. Taufik M, Jain PK. Laser assisted finishing process for improved surface finish of fused deposition modelled parts. Journal of Manufacturing Processes. 2017;30:161-177. [Link] [DOI:10.1016/j.jmapro.2017.09.020]
31. Hirsch P, Bastick S, Jaeschke P, van den Aker R, Geyer A, Zscheyge M, et al. Effect of thermal properties on laser cutting of continuous glass and carbon fiber-reinforced polyamide 6 composites. Machining Science and Technology. 2018;23(1):1-18. [Link] [DOI:10.1080/10910344.2018.1449216]
32. Hu J, Zhu D. Experimental study on the picosecond pulsed laser cutting of carbon fiber-reinforced plastics. Journal of Reinforced Plastics and Composites. 2018;37(15):993-1003. [Link] [DOI:10.1177/0731684418775807]
33. Leone C, Genna S. Heat affected zone extension in pulsed Nd:YAG laser cutting of CFRP. Composites Part B: Engineering. 2018;140:174-182. [Link] [DOI:10.1016/j.compositesb.2017.12.028]
34. Herzog D, Schmidt-Lehr M, Oberlander M, Canisius M, Radek M, Emmelmann C. Laser cutting of carbon fibre reinforced plastics of high thickness. Materials & Design. 2016;92:742-749. [Link] [DOI:10.1016/j.matdes.2015.12.056]
35. Patela P, Shethb S, Patelc T. Experimental analysis and ANN modelling of HAZ in laser cutting of glass fibre reinforced plastic composites. Procedia Technology. 2016;23:406-413. [Link] [DOI:10.1016/j.protcy.2016.03.044]
36. Karimzad Ghavidel A, Azdast T, Shabgard MR, Navidfar A, Mamaghani Shishavan S. Effect of carbon nanotubes on laser cutting of multi-walled carbon nanotubes/poly methyl methacrylate Nano composite. Optics & Laser Technology. 2015;67:119-124. [Link] [DOI:10.1016/j.optlastec.2014.10.003]
37. Eltawahni HA, Olabi AG, Benyounis KY. Effect of process parameters and optimization of CO2 laser cutting of ultrahigh-performance polyethylene. Optics & Laser Technology. 2010;31(8):4029-4038. [Link] [DOI:10.1016/j.matdes.2010.03.035]
38. Ohkuboa T, Tsukamotob M, Satob Y. Numerical simulation of laser beam cutting of carbon fiber reinforced plastics. Physics Procedia. 2014;56:1165-1170. [Link] [DOI:10.1016/j.phpro.2014.08.031]
39. Leone C, Genna S, Tagliaferri V. Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Optics & Lasers in Engineering. 2014;53:43-50. [Link] [DOI:10.1016/j.optlaseng.2013.07.027]
40. Choudhury IA, Chuan PC. Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite. Optics and Lasers in Engineering. 2013;51(10):1125-1132. [Link] [DOI:10.1016/j.optlaseng.2013.04.017]
41. Riveiro A, Quintero F, Lusquiños F, del Val J, Comesaña R, Boutinguiza M, Pou J. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Composites Part A: Applied Science and Manufacturing. 2012;43(8):1400-1409. [Link] [DOI:10.1016/j.compositesa.2012.02.012]
42. Goeke A, Emmelmann C. Influence of laser cutting parameters on CFRP part quality. Physics Procedia. 2010;5 Pt 5:253-258. [Link] [DOI:10.1016/j.phpro.2010.08.051]
43. Kurt M, Kaynak Y, Bagci E, Demirer H, Kurt M. Dimensional analyses and surface quality of the laser cutting process for engineering plastics. The International Journal Advanced Manufacturing Technology. 2008;41:259-267. [Link] [DOI:10.1007/s00170-008-1468-7]
44. Davim JP, Oliveira C, Barricas N, Conceição M. Evaluation of cutting quality of PMMA using CO2 lasers. The International Journal Advanced Manufacturing Technology. 2008;35:875-879. [Link] [DOI:10.1007/s00170-006-0766-1]
45. Romoli L, Tantussi G, Dini G. Layered laser vaporization of PMMA manufacturing 3D mould cavities. CIRP Annals. 2007;56(1):209-212. [Link] [DOI:10.1016/j.cirp.2007.05.050]
46. Marimuthu S, Dunleavey J, Liu Y, Antar M, Smith B. Laser cutting of aluminium-alumina metal matrix composite. Optics & Laser Technology. 2019;117:251-259. [Link] [DOI:10.1016/j.optlastec.2019.04.029]
47. Sharifi M, Akbari M. Experimental investigation of the effect of process parameters on cutting region temperature and cutting edge quality in laser cutting of AL6061T6 alloy. Optik. 2019;184:457-463. [Link] [DOI:10.1016/j.ijleo.2019.04.105]
48. Wetzig A, Herwig P, Hauptmann J, Baumann R, Rauscher P, Schlosser M, et al. Fast laser cutting of thin metal. Procedia Manufacturing. 2019;29:369-374. [Link] [DOI:10.1016/j.promfg.2019.02.150]
49. Parthiban A, Dhanasekaran C, Sivaganesan S, Sathish S. Modeling on surface cut quality of CO2 laser cutting for Austenitic Stainless steel sheet. MaterialsToday Proceedings. 2020;21(1):823-827. [Link] [DOI:10.1016/j.matpr.2019.07.428]
50. Kotadiya DJ, Kapopara JM, Patel AR, Dalwadi CG, Pandya DH. Parametric analysis of process parameter for Laser cutting process on SS-304. MaterialsToday Proceedings. 2018;5(2 Pt 1):5384-5390. [Link] [DOI:10.1016/j.matpr.2017.12.124]
51. Moradi M, Karami Moghadam M. High power diode laser surface hardening of AISI 4130, statistical modelling and optimization. Optics & Laser Technology. 2019;111:554-570. [Link] [DOI:10.1016/j.optlastec.2018.10.043]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.