1. Huang B, Liang S, Qu X. The rheology of metal injection molding. Journal of Materials Processing Technology. 2003;137(1-3):132-137. [
Link] [
DOI:10.1016/S0924-0136(02)01100-7]
2. Hausnerová B, Marcaníková L, Filip P, Sáha P. Optimization of powder injection molding of feedstock based on aluminum oxide and multicomponent water‐soluble polymer binder. Polymer Engineering & Science. 2011;51(7):1376-1382. [
Link] [
DOI:10.1002/pen.21928]
3. Macosko CW. Rheology: Principles, measurements, and applications. New York: Wily-VCH; 1994. [
Link]
4. Hidalgo J, Jiménez-Morales A, Torralba JM. Torque rheology of zircon feedstocks for powder injection moulding. Journal of the European Ceramic Society. 2012;32(16):4063-4072. [
Link] [
DOI:10.1016/j.jeurceramsoc.2012.06.023]
5. Thomas-Vielma P, Cervera A, Levenfeld B, Várez A. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society. 2008;28(4):763-771. [
Link] [
DOI:10.1016/j.jeurceramsoc.2007.08.004]
6. Reddy JJ, Ravi N, Vijayakumar M. A simple model for viscosity of powder injection moulding mixes with binder content above powder critical binder volume concentration. Journal of the European Ceramic Society. 2000;20(12):2183-2190. [
Link] [
DOI:10.1016/S0955-2219(00)00096-0]
7. Ibrahim MH, Muhamad N, Sulong AB. Rheological investigation of water atomised stainless steel powder for micro metal injection molding. International Journal of Mechanical and Materials Engineering. 2009;4(1):1-8. [
Link]
8. Agote I, Odriozola A, Gutierrez M, Santamarıa A, Quintanilla J, Coupelle P, et al. Rheological study of waste porcelain feedstocks for injection moulding. Journal of the European Ceramic Society. 2001;21(16):2843-2853. [
Link] [
DOI:10.1016/S0955-2219(01)00210-2]
9. Li Y, Li L, Khalil KA. Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology. 2007;183(2-3):432-439. [
Link] [
DOI:10.1016/j.jmatprotec.2006.10.039]
10. Sotomayor ME, Várez A, Levenfeld B. Influence of powder particle size distribution on rheological properties of 316 L powder injection moulding feedstocks. Powder Technology. 2010;200(1-2):30-36. [
Link] [
DOI:10.1016/j.powtec.2010.02.003]
11. Sotomayor ME, Levenfeld B, Várez A. Powder injection moulding of premixed ferritic and austenitic stainless steel powders. Materials Science and Engineering: A. 2011;528(9):3480-3488. [
Link] [
DOI:10.1016/j.msea.2011.01.038]
12. Chhabra RP. Bubbles, drops, and particles in non-Newtonian fluids (Chemical Industries). 2nd Edition. Boca Raton: CRC Press; 2006. [
Link] [
DOI:10.1201/9781420015386]
13. German RM, Bose A. Injection molding of metals and ceramics. Princeton: Metal Powder Industries Federation; 1997. [
Link]
14. Haw PL, Muhamad N, Murthadha H. The characterization and flow behavior of 316L stainless steel feedstock for Micro Metal Injection Molding (μMIM). Applied Mechanics and Materials. 2011;44-47:2872-2876. [
Link] [
DOI:10.4028/www.scientific.net/AMM.44-47.2872]
15. Levenfeld B, Gruzza A, Várez A, Torralba JM. Modified metal injection moulding process of 316L stainless steel powders using thermosetting binder. Powder Metallurgy. 2000;43(3):233-237. [
Link] [
DOI:10.1179/003258900665998]
16. Lin KH. Wear behavior and mechanical performance of metal injection molded Fe-2Ni sintered components. Materials & Design. 2011;32(3):1273-1282. [
Link] [
DOI:10.1016/j.matdes.2010.09.034]
17. Urval R, Lee S, Atre SV, Park SJ, German RM. Optimisation of process conditions in powder injection moulding of microsystem components using a robust design method: part I. primary design parameters. Powder Metallurgy. 2008;51(2):133-142. [
Link] [
DOI:10.1179/174329008X284796]
18. Omar MA, Subuki I. Sintering characteristics of injection moulded 316L component using palm-based biopolymer binder. In: Shatokha V, editor. Sintering-Methods and Products. Unknown City: IntechOpen; 2012. [
Link]
19. Sclavons M, Laurent M, Devaux J, Carlier V. Maleic anhydride-grafted polypropylene: FTIR study of a model polymer grafted by ene-reaction. Polymer. 2005;46(19):8062-8067. [
Link] [
DOI:10.1016/j.polymer.2005.06.115]
20. Moballegh L, Morshedian J, Esfandeh M. Copper injection molding using a thermoplastic binder based on paraffin wax. Materials Letters. 2005;59(22):2832-2837. [
Link] [
DOI:10.1016/j.matlet.2005.04.027]
21. Rei M, Milke EC, Gomes RM, Schaeffer L, Souza JP. Low-pressure injection molding processing of a 316-L stainless steel feedstock. Materials Letters. 2002;52(4-5):360-365. [
Link] [
DOI:10.1016/S0167-577X(01)00422-0]
22. Li YM, Liu XQ, Luo FH, Yue JL. Effects of surfactant on properties of MIM feedstock. Transactions of Nonferrous Metals Society of China. 2007;17(1):1-8. [
Link] [
DOI:10.1016/S1003-6326(07)60039-9]
23. Liu ZY, Loh NH, Tor SB, Khor KA, Murakoshi Y, Maeda R. Binder system for micropowder injection molding. Materials Letters. 2001;48(1):31-38. [
Link] [
DOI:10.1016/S0167-577X(00)00276-7]
24. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR, Editors. Polymer handbook. Hoboken: John Wiley & Sons; 1999. [
Link]
25. Oh JW, Lee WS, Park SJ. Investigation and modeling of binder removal process in nano/micro bimodal powder injection molding. The International Journal of Advanced Manufacturing Technology. 2018;97:4115-4126. [
Link] [
DOI:10.1007/s00170-018-2263-8]
26. Kong X, Barriere T, Gelin JC. Determination of critical and optimal powder loadings for 316L fine stainless steel feedstocks for micro-powder injection molding. Journal of Materials Processing Technology. 2012;212(11):2173-2182. [
Link] [
DOI:10.1016/j.jmatprotec.2012.05.023]
27. Khakbiz M, Simchi A, Bagheri R. Analysis of the rheological behavior and stability of 316L stainless steel-TiC powder injection molding feedstock. Materials Science and Engineering: A. 2005;407(1-2):105-113. [
Link] [
DOI:10.1016/j.msea.2005.06.057]