طراحی، ساخت و کنترل ربات دو چرخ خود تعادلی

عبره ضریب ۱: محض‌پایا ناکارخدا

* ۱- فاز انجام‌گیری کارشناسی ارشد، مهندسی کامپیوتر، پردیس ال‌پی دانشگاه تهران، کرج
۲- استادیار، مهندسی مکانیک، پردیس دانشگاهی خ، دانشگاه تهران، تهران

\[ \text{زکر زاده‌ده \atut.ac.ir} \]

چکیده

هدف از این مقاله به این مورد نزدیکی، ساخت و کنترل چرخ دو چرخ تعادلی است. این ایده از تجربیه‌های تهیه‌کننده کنترل اطراف در این زمینه بررسی شده و پیشنهاد کنترل‌هایی جدید و بهینه‌تری با آن تغییر داده شده است. بیشترین مزایای این کنترل چرخ دو چرخ تعادلی در عملکرد و چرخ دو چرخ تعادلی استفاده شده است. این کنترل چرخ دو چرخ تعادلی برای ارزیابی و بررسی خود تعادلی دو چرخ برای بادکوبک کنترل پنجره می‌تواند و سه‌شنبه تکه‌کوب زنده و ارتباط می‌باشد.

کلمات کلیدی: کنترل چرخ دو چرخ تعادلی، طراحی چرخ دو چرخ تعادلی، مهندسی مکانیک

Design, Construction and Control of a Two-Wheel Self-Balancing Robot

Ali Reza Farivar*, Mohammad Reza Zakerzadeh*

1- Mechatronics Engineering Group, Alborz International Campus, University of Tehran, Karaj, Iran
2- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

*P.G.B. 11155-4563 Tehran, Iran, zakerzadeh@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 30 December 2014
Accepted 19 April 2015
Available Online 02 June 2015

Keywords: Two-wheel Robot, PID controller, Kalman filter, Accelerometer, Gyroscope

ABSTRACT

The purpose of this paper is the design, construction and control of a two-wheel self-balancing robot. For this purpose firstly, a literature study is carried out on the history of manufactured self-balancing robots and the researches which have been done so far in this area are reported. In addition, the robot chassis design taking into consideration the size and material is analyzed; and the dynamic equations of the robot are computed according to the designed chassis. Then, the robot inertial parameters are measured through different experimental tests and these parameters are used in the equations. Also, the derived equations are simplified and the transfer functions are evaluated to determine the robot stability. In this self-balancing robot, the simplified Kalman and complementary filters are used for identifying the bias angle from the vertical position by combination of data obtained from accelerometer and gyroscope sensors. The PID controller and the robot transfer functions are simulated in MATLAB software. Then, the controller gains for stabilizing the constructed robot are appointed theoretically and stabilizing results are considered practically and theoretically. Finally, the robot control electronic circuit is designed for analyzing the results through AVR microcontroller, while angle identification sensor is used.

Please cite this article using:


(In Persian)
می‌کند [۴]، ناکی و همکاران کننده "گولنر" خلیه و دوجری [۷] برای رای دادن به مقام مکانیک نسبت به یک راه حل محاسباتی که با پرداختن به این دسته از مدل‌های راه حل مکانیکی می‌گردد. مدل‌ها در سال ۲۰۰۲ این شده و به وسیله مدلی دیگر، برای افزایش سطح حرارتی که شامل مدلی دیگر بوده است. مدلی دیگر برای افزایش حرارتی که شامل مدلی دیگر بوده است.
که در این رابطه x مقدار گرفته‌ای را در راستای محور افقی Ff، نیرو در اتاق می‌باشد. این مقدار وارد شده از بهینه رایانه به چرخ و جرم چرخ رابطه است با توجه به معادلات این رابطه در استخراج چرخ‌انداز عبارت است.

\[ F_y = mg \rightarrow \text{مقدار } m \rightarrow F_y \]  (2)

نیروی وارد شده از طرف رایانه به چرخ در راستای V نیروی عمود \( Fv \) بر سطح است. با توجه به معادلات این رابطه می‌توان در استخراج چرخ‌انداز جریان را مشاهده کرد.

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (3)

\[ \omega = \omega_{\text{سنگ}} + \theta \]  (4)

\[ \theta = \frac{\tau}{r} \rightarrow \text{زاویه } \theta \]  (5)

\[ Y_r = r + \tau \cos \theta \]  (6)

\[ X_r = X + L \sin \theta \]  (7)

\[ Y_r = Y + L \cos \theta \]  (8)

\[ \text{یا چرا در رابطه } V = \frac{X}{X_r} \rightarrow \text{زاویه } \theta \]  (9)

\[ \text{زاویه } \theta \]  (10)

\[ \omega_{\text{سنگ}} = \omega_{\text{سنگ}} + \theta \]  (11)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (12)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (13)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (14)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (15)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (16)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (17)

\[ \frac{M}{\tau} = l \rightarrow \tau = \frac{M}{l} \]  (18)
2-3 SINGLE INPUT SINGLE OUTPUT

MEMS: Micro Electro Mechanical Systems

\[
V = \frac{R}{K_i} \left[ \frac{l_m + \frac{r_m a}{2}}{\tau} + (0.5r_m R L) \theta \right] + \frac{K_e}{K_i} \theta = K_e \theta
\]

(18)

By canceling the second and 10.8 (19) in the range of 12, \(-r_m L - 2l_m - 2m) \right) + \left(1 + \frac{l_m}{r_m} \right) \theta - \theta = 0

(19)

Equations describe the dynamic behavior of the system.

- The dynamic behavior of the system is described.
- The equations of motion are solved.
- The solutions are plotted.
- The behavior of the system is analyzed.
3- تحقیق داده‌های زیرسوسک و شابانس

یکی از ابزارهای پیش‌بینی برای تشخیص و بررسی اثرات محیطی و بیولوژیکی، فناوری‌های زیرسوسک و شابانس استفاده می‌شود. این ابزارها قادرند ارتباطی بین تغییرات محیطی و رفتار موجودات زیستی شناسایی کنند.

در این تحقیق، اثرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.

3-2- زیرسوسک

زیرسوسک استفاده‌سازی یک محور را با استفاده از تحقیق‌های موردی می‌کند. این محور برای بررسی تغییرات محیطی و رفتار موجودات زیستی استفاده می‌شود.

در این تحقیق، تغییرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.

3-3- شابانس

شابانس یک ابزار پژوهشگری است که برای بررسی تغییرات محیطی و رفتار موجودات زیستی استفاده می‌شود.

در این تحقیق، تغییرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.

3-4- گردش

گردش یک ابزار پژوهشگری است که برای بررسی تغییرات محیطی و رفتار موجودات زیستی استفاده می‌شود.

در این تحقیق، تغییرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.

3-5- بانک‌ها

بانک‌ها یک ابزار پژوهشگری است که برای بررسی تغییرات محیطی و رفتار موجودات زیستی استفاده می‌شود.

در این تحقیق، تغییرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.

3-6- کاربرد

کاربرد یک ابزار پژوهشگری است که برای بررسی تغییرات محیطی و رفتار موجودات زیستی استفاده می‌شود.

در این تحقیق، تغییرات محیطی بر روی تغییرات رفتاری موجودات زیستی بررسی گردید. نتایج نشان داد که تغییرات محیطی می‌توانند به تغییرات رفتاری منجر شوند. این تغییرات می‌توانند از طریق تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی صورت پذیرند.

در مورد تحقیق داده‌های زیرسوسک و شابانس، کلکسیون‌هایی از روایت‌های زیست‌شناسی موجودات زیستی، شامل تغییرات در دما، فشار، فرکانس یا شدت نور و افزایش یا کاهش بار آب و هوایی، پژوهشگران به کمک آنها به تحقیق داده‌های زیرسوسک و شابانس کمک می‌کنند.
فیلتر کالمن بعد از تخمین متغیر مورد نظر، از طریق روش کالمان استفاده می‌شود.

 queda

3- Estimation
4- Normalize

التیفم، حاصلی از کالبانه‌سازی نشان دهنده حضور و عدم وجود ماهیتی مربوط به این مدل مطرح می‌شود.

**(الف) مدل دو هارمونیک**

- مدل دو نسبت به واقعیت، روش‌ها و ترفندهای استفاده در محاسبات سیستم‌های رادیو ماهواره‌ای استفاده می‌کند.

- استفاده از مدل دو نسبت به واقعیت، روش‌ها و ترفندهای استفاده در محاسبات سیستم‌های رادیو ماهواره‌ای استفاده می‌کند.
\[
R_e(n) = \frac{R_{acc} + R_{gyro}}{1 + w_{gyro}}
\]

<table>
<thead>
<tr>
<th>Accel</th>
<th>Normalized</th>
<th>Eq. 31</th>
<th>Eq. 32</th>
<th>Eq. 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ R_e(n) = \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) ]</td>
<td>[ R_e(n) = \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) ]</td>
<td>[ R_e(n) = \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) ]</td>
<td>[ R_e(n) = \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) \left( \frac{1}{\theta} \right) \left( \frac{1}{k} \right) ]</td>
<td></td>
</tr>
</tbody>
</table>

\[ R_{gyro} = \frac{R_x + R_y + R_z}{3} \]

\[ R_{acc} = \sqrt{R_{acc}^2 + R_{acc}^2 + R_{acc}^2} \]

\[ k = \frac{1}{10} \approx 0.1015 \]

\[ \theta = \sqrt{\theta^2 + \theta^2 + \theta^2} \]

\[ x \times y \times z = \theta \times \theta \times \theta \]

\[ x \times y = \theta \times \theta \times \theta \]

\[ x \times y \times z = \theta \times \theta \times \theta \]

\[ x \times y \times z = \theta \times \theta \times \theta \]

\[ x \times y = \theta \times \theta \times \theta \]

\[ x \times y = \theta \times \theta \times \theta \]

\[ x \times y = \theta \times \theta \times \theta \]
نوعیزیه‌ها در سطح میکروکنترلر اصلی و نوارهای دیگر موجود در سطح درونی دستگاه نوری می‌باشند. این نوعیزیه‌ها توسط میکروکنترلر و کنترلر دیگری که در سطح دستگاه قرار دارد کنترل می‌شوند.

4- طراحی مادرکرتی و مادر راه‌اندازی موتور

هر دیجیتال‌های الکترونیکی از جمله موتورهای جریان مشروعی برای راه‌اندازی نیاز به تغذیه (باکس) دارد. معمولاً موتورهایی که برای ساختن کیف‌ها و محصولاتی که این نوعیزیه‌ها در نوری می‌باشند مورد استفاده قرار می‌گیرند.

شکل 14: راه‌اندازی گیرنده در استوانه X به فیلتر کامل در مدار روش‌کننده

شکل 15: راه‌اندازی گیرنده در استوانه Y به فیلتر کامل در مدار روش‌کننده

2- PLC (Programmable logic controller)
3- Interface Circuits
4- Mobile Robot
5- AVR
6- ATMega32
7- MPu6050
8- S-Pare
9- Led

1- Sensor Fusion
که در برنامه فوق کنترل عمودی، انگرال‌گیری و دیفرانسیال

است و شاخص پیوسته کنترلی و سرعت دمایی است. از

شکل 18 سری و طبق تبدیل رات (رایه برحس و تاتا) امید

است به سبب می‌گردد که علت و معادله درست است.

محور موبایل سیستم ناپایدار است. بلکه تغییرات مجموعه کنترل

و راه‌های ارائه سیستم آنها در شکل 19 نشان داده است. است

همان‌طور که مشخص است فقط از خروجی رایه تغییرات فرخه شد و

به ورودی اصلی می‌شود. در شکل 20 جهت طراحی یک کنترل کننده

ناتسابیانگرال می‌شود و بررسی نحوه عملکرد آن در برنامه

بر روی نرم‌افزار مثال ۷ استفاده شده است. لازم به ذکر است

که فرآیند ناتسابیانگرال می‌شود و عمل به پایه سازی

نیست. چرا که در یک سیستم واقعی، به دلیل اشتباه کنترل کننده

(مدفوع دیگر) نمی‌توان یک فرآیند کنترلی را به سیستم مدلسازی

کرد. به علت مدل‌های کافی برای این شیب‌سازی ضریب ناتسابیانگرال-

مشتاق‌گیری طراحی تنظیم کرده که تولید فرآیندها برای (پنگ تغذیه بالا)

پایه سیستم (پایه انحراف) را در سطح زمان می‌تواند باعث شود

(میثاق) بررسی ویک و رابط واقعی (پنگ تغذیه مولتی) تا می‌تواند در

(شکل 12) و همین‌طور، نمودار فرآیند خروجی کنترل کننده

نیز روش این تا کن سایی کی از تغییرات نتایج تغذیه مولتی در

با پیش‌بینی رایت به نجدال داده شود.

از سیستم‌های استفاده در مدلسازی ضریب مشتاق‌گیری پایش

سیستم را به‌دست آمده اما در سیستم واقعی به علت ورود نویز، ممکن

مشتاق‌گیری با اخلال‌های موجود می‌شود. برای اطمینان از نمودار سیستم،

یک شیب‌سازی از راه دنیای ابرای مسیرهای رومافزار مسب

ابهام می‌شود. در شکل 20 بلکه اشکال از برای محدودیت ورودی تغذیه

شکل 17 باعیضه موجود به دلیل ضرب منفی در تبدیل زاویه

برحس و تاتا در نظر گرفته شده است.

Error = measurement Teta- desired teta

P= Kp*Error

l=last integral+ (Error*Ki)

D= (Kd*d(Error)/dt)/T

pid= P+I+D

1- Proportional, Integral, Differential

2- Matlab

3- Simulink

شکل 16 نمایش کلی مدل میکروکنترلر

شکل 15 نمودار صفحه و طبق سیستم واگیربندی و نجات

2- Matlab

3- Simulink

شکل 17 نمایش کلی مدل میکروکنترلر

شکل 15 نمودار صفحه و طبق سیستم واگیربندی و نجات

شکل 16 نمایش کلی مدل میکروکنترلر

شکل 15 نمودار صفحه و طبق سیستم واگیربندی و نجات

شکل 16 نمایش کلی مدل میکروکنترلر
در این قسمت تنظیم ضرایب نانسانی-انگرالی-سنتی کی روش آن را بیان خواهیم کرد. است. در این دیوان، به‌طور گسترده‌ای در محیط‌کار

ریا (به دلیل ویژگی‌های) از تابی متقابل کی در محاسبات صرف نظر شده

است و ضرایب نانسانی و انگرالی محاسبه شده. در این روش با توجه به

حس کلی به‌دست آمده از یک سیستم توسط روش‌های مختلف یکی یا دو، نتایج

زیر در تنظیم ضرایب کنترل کننده حاصل شد.

\[ K = 500 \quad \text{و} \quad K_P = 1200 \]

ضرایب کنترلی در محیط مشابهی مثلاً اعمال شده است و نمودار زاویه

خروجی با این ضرایب در شکل 21 به تصویر شده است. همانطور که

مشاهده می‌شود بعد از اعمال ضرایب، ریا بعد از دو ثانیه به زاویه مطلوب که

همان‌تعداد اسکی، ریسم ماهیتی نیستند. در شکل 22 ولتاژ اعمال شده به

موتورها نمایش داده شده است. شکل 23 را مراجعه کنید. زمانی که تعداد

روی آن انجم پذیرفته است.

6- مشخصات قطعات به کار رفته در ربات

مشخصات موتورها و سنسورها به کار رفته در ربات گونه 2 آمده

است.

1) DSP: Digital Signal Processing


10 F. Grassr, A. D. Arrigo, S. Colimbi, and A. Rufer, , Accessed 10 March 2010. JOE: Mobile, Inverted Pendulum, Laboratory of Industrial Electronics, Swiss Federal Institute of Technology Lausanne, EPFL


14 Bender, Accessed 9 August 2007; www.tridlarson.com

15 SegiBot, Accessed 13 August 2010; http://coecal.ece.uic.edu/~gr423/spring04/group9/objectives_design.htm, University of Illinois at Urbana-Champaign, USA


18 G. Welch, and G. Bishop, Accessed 25 August 2014, An Introduction to the Kalman Filter, Department of Computer Science, University of North Carolina at Chapel Hill


198 مکانیک و مکانیزاسیون داکتر نوروزی

