Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1271-1282 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farzan H, Jaafarian S, Ameri M. Experimental and Theoretical Investigation of Flow Rate Effect on Dynamic and Efficiency of Asphalt Solar Collector in Real Operating Condition. Modares Mechanical Engineering 2020; 20 (5) :1271-1282
URL: http://mme.modares.ac.ir/article-15-33507-en.html
1- Mechanical Engineering Department, Engineering Faculty, Higher Educational Complex of Bam, Bam, Iran , hadi.farzan@bam.ac.ir
2- Mechanical Engineering Department, Engineering Faculty, Higher Educational Complex of Bam, Bam, Iran
3- Mechanical Engineering Department, Engineering Faculty, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract:   (997 Views)
The asphalt pavements are exposed to daily solar radiation; hence the asphalt pavements provide the remarkable potential to heat a working fluid such as water. Simple structure and ease of fabrication of asphalt solar collectors (ASCs) promise applicability and low-cost operation of this class of thermal collectors. The current experimental and theoretical investigation evaluates the performance, efficiency and dynamic of ASCs in real operating condition at Bam County, Kerman. In this research, to investigate the performance of ASCs, a 1.2m2 prototype was fabricated and its dynamics was monitored under 6 hours a day in two different flow rates of water. The results illustrate that increasing the flow rate of water to collector by 2 times improves the collector efficiency by 25%, while the difference in the inlet and outlet water temperatures decreases. Furthermore, by utilizing the experimental data, a theoretical approach was utilized to predict the performance of ASC in the other flow rates of water. The developed analytic approach has good consistency with the obtained experimental test. The analytic approach provides an effective method to estimate the performance of ASCs with appropriate accuracy, when the experimental results are unavailable.
Full-Text [PDF 2063 kb]   (606 Downloads)    
Article Type: Original Research | Subject: Heat & Mass Transfer
Received: 2019/06/2 | Accepted: 2019/11/29 | Published: 2020/05/9

1. Ariyanfar L, Yari M, Abdi Aghdam E. Energy, exergy, economic, environmental (4E) analyses of a solar organic Rankine cycle to produce combined heat and power. Modares Mechanical Engineering. 2016;16(10):229-240. [Persian] [Link]
2. Afzali F, Amiri H, Nakhaei V, Ameri M. Fabrication and thermal modeling of unglazed transpired solar air heater collectors with metallic (steel) and non-metallic absorber plates. Modares Mechanical Engineering. 2017;17(9):339-350. [Persian] [Link]
3. Khajepour S, Ameri M. Direct steam generation solar power plant in the two pressures cycle. Modares Mechanical Engineering. 2019;19(1):11-19. [Persian] [Link]
4. Pugsley A, Zacharopoulos A, Smyth M, Mondol J. Performance evaluation of the senergy polycarbonate and asphalt carbon nanotube solar water heating collectors for building integration. Renewable Energy. 2017;137:2-9. [Link] [DOI:10.1016/j.renene.2017.10.082]
5. Pan P, Wu S, Xiao Y, Liu G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews. 2015;48:624-634. [Link] [DOI:10.1016/j.rser.2015.04.029]
6. O'Hegarty R, Kinnane O, McCormack SJ. Concrete solar collectors for façade integration: An experimental and numerical investigation. Applied Energy. 2017;206:1040-1061. [Link] [DOI:10.1016/j.apenergy.2017.08.239]
7. Chen M, Wu S, Wang H, Zhang J. Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy Materials and Solar Cells. 2011;95(12):3241-3250. [Link] [DOI:10.1016/j.solmat.2011.07.013]
8. Zhou Z, Wang X, Zhang X, Chen G, Zuo J, Pullen S. Effectiveness of pavement-solar energy system-An experimental study. Applied Energy. 2015;138:1-10. [Link] [DOI:10.1016/j.apenergy.2014.10.045]
9. Du Y, Chen J, Han Z, Liu W. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Construction and Building Materials. 2018;168:893-905. [Link] [DOI:10.1016/j.conbuildmat.2018.02.151]
10. Nasir DS, Hughes BR, Calautit JK. A CFD analysis of several design parameters of a road pavement solar collector (RPSC) for urban application. Applied Energy. 2017;186(3):436-449. [Link] [DOI:10.1016/j.apenergy.2016.04.002]
11. Nasir DS, Hughes BR, Calautit JK. Influence of urban form on the performance of road pavement solar collector system: Symmetrical and asymmetrical heights. Energy Conversion and Management. 2017;149:904-917. [Link] [DOI:10.1016/j.enconman.2017.03.081]
12. Yinfei D, Zheng H, Jiaqi C, Weizheng L. A novel strategy of inducing solar absorption and accelerating heat release for cooling asphalt pavement. Solar Energy. 2018;159:125-133. [Link] [DOI:10.1016/j.solener.2017.10.086]
13. Chiarelli A, Al-Mohammedawi A, Dawson A, Garcia A. Construction and configuration of convection-powered asphalt solar collectors for the reduction of urban temperatures. International Journal of Thermal Sciences. 2017;112:242-251. [Link] [DOI:10.1016/j.ijthermalsci.2016.10.012]
14. Shaopeng W, Mingyu C, Jizhe Z. Laboratory investigation into thermal response of asphalt pavements as solar collector by application of small-scale slabs. Applied Thermal Engineering. 2011;31(10):1582-1587. [Link] [DOI:10.1016/j.applthermaleng.2011.01.028]
15. Pascual-Muñoz P, Castro-Fresno D, Serrano-Bravo P, Alonso-Estébanez A. Thermal and hydraulic analysis of multilayered asphalt pavements as active solar collectors. Applied energy. 2013;111:324-332. [Link] [DOI:10.1016/j.apenergy.2013.05.013]
16. García A, Partl MN. How to transform an asphalt concrete pavement into a solar turbine. Applied Energy. 2014;119:431-437. [Link] [DOI:10.1016/j.apenergy.2014.01.006]
17. Guldentops G, Nejad AM, Vuye C, Rahbar N. Performance of a pavement solar energy collector: Model development and validation. Applied Energy. 2016;163:180-189. [Link] [DOI:10.1016/j.apenergy.2015.11.010]
18. Alonso-Estebanez A, Pascual-Munoz P, Sampedro-García JL, Castro-Fresno D. 3D numerical modelling and experimental validation of an asphalt solar collector. Applied Thermal Engineering. 2017;126:678-688. [Link] [DOI:10.1016/j.applthermaleng.2017.07.127]
19. Asfour S, Bernardin F, Toussaint E. Experimental validation of 2D hydrothermal modelling of porous pavement for heating and solar energy retrieving applications. Road Materials and Pavement Design. 2018:1-17. [Link] [DOI:10.1080/14680629.2018.1525418]
20. Li B, Wu S, Xiao Y, Pan P. Investigation of heat-collecting properties of asphalt pavement as solar collector by a three-dimensional unsteady model. Materials Research Innovations. 2015;19(Sup1):S1-172-S1-176. [Link] [DOI:10.1179/1432891715Z.0000000001398]
21. Mirzanamadi R, Hagentoft CE, Johansson P. Numerical investigation of harvesting solar energy and anti-icing road surfaces using a hydronic heating pavement and borehole thermal energy storage. Energies. 2018;11(12):3443. [Link] [DOI:10.3390/en11123443]
22. Nasir DS, Hughes BR, Calautit JK. A study of the impact of building geometry on the thermal performance of road pavement solar collectors. Energy. 2015;93:2614-2630. [Link] [DOI:10.1016/j.energy.2015.09.128]
23. Wang H, Jasim A, Chen X. Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review. Applied energy. 2018;212:1083-1094. [Link] [DOI:10.1016/j.apenergy.2017.12.125]
24. Liu X, Rees SJ, Spitler JD. Modeling snow melting on heated pavement surfaces. Part I: Model development. Applied Thermal Engineering. 2007;27(5-6):1115-24. [Link] [DOI:10.1016/j.applthermaleng.2006.06.017]
25. Mallick RB, Chen B-L, Bhowmick S, Hulen M. Capturing solar energy from asphalt pavements. International symposium on asphalt pavements and environment [Report]. Zurich, Switzerland: International Society for Asphalt Pavements; 2008. [Link]
26. Mallick R, Carelli J, Albano L, Bhowmick S, Veeraragavan A. Evaluation of the potential of harvesting heat energy from asphalt pavements. International Journal of Sustainable Engineering. 2011;4(2):164-171. [Link] [DOI:10.1080/19397038.2010.550336]
27. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Introduction to heat transfer. New Jersey: John Wiley & Sons; 2011. [Link]
28. Kalogirou SA. Solar energy engineering. 2nd Edition. Amsterdam: Elsevier; 2013. [Link]
29. Kline S, McClintock FA. Describing uncertainty in single-sample experiments. Mech Engineering. 1953;75(1):3-8. [Link]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.