Volume 20, Issue 4 (April 2020)                   Modares Mechanical Engineering 2020, 20(4): 943-951 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghasemkhani A, Mazaheri H. Study of Functionally Graded Temperature-Sensitive Hydrogel Micro-Valve Considering Fluid-Structure Interactions. Modares Mechanical Engineering 2020; 20 (4) :943-951
URL: http://mme.modares.ac.ir/article-15-34007-en.html
1- Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran
2- Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran , h.mazaheri@basu.ac.ir
Abstract:   (3753 Views)

Hydrogels are the smart polymeric materials, which undergo large deformation when they are subjected to different physical and chemical stimuli in contact with fluids. These materials can be applied as sensors and actuators for instance in microfluidics in which the fluid-solid interactions have an important effect on its performance. On the other hand, the use of graded materials is also important considering their advantages. In this study, the behavior of a functionally graded temperature sensitive hydrogel micro-valve is investigated through considering the fluid-solid interactions. In this regard, the appropriate numerical tool for finite element modeling of a functionally graded hydrogel micro-valve has been developed that it has been implemented in both non fluid-solid interactions and fluid-solid interactions simulation. The homogeneous cases of the micro-valve have also been considered to distinguish the functionally graded temperature sensitive hydrogel micro-valve effect. The results indicate that the effect of fluid-solid interactions was important and have considerable impact on micro-valve operating parameters particularly its closing temperature and fluid flow rate. Thus, a comprehensive study on hydrogel-based micro-valve has been presented  considering operating parameters such as inlet pressure and cross linking density of hydrogel.

Full-Text [PDF 1536 kb]   (5084 Downloads)    
Article Type: Original Research | Subject: Composites
Received: 2019/06/19 | Accepted: 2019/09/14 | Published: 2020/04/17

References
1. Morimoto T, Ashida F. Temperature-responsive bending of a bilayer gel. International Journal of Solids and Structures. 2015;56:20-28. [Link] [DOI:10.1016/j.ijsolstr.2014.12.009]
2. Abdolahi J, Baghani M, Arbabi N, Mazaheri H. Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis. Composite Structures. 2017;164:219-228. [Link] [DOI:10.1016/j.compstruct.2016.12.063]
3. Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter. 2010;6:784-793. [Link] [DOI:10.1039/b917211d]
4. Chester SA, Anand L. A coupled theory of fluid permeation and large deformations for elastomeric materials. Journal of the Mechanics and Physics of Solids. 2010;58(11):1879-1906. [Link] [DOI:10.1016/j.jmps.2010.07.020]
5. Toh W, Ng TY, Hu J, Liu Z. Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels. International Journal of Solids and Structures. 2014;51(25-26):4440-4451. [Link] [DOI:10.1016/j.ijsolstr.2014.09.014]
6. Kargar-Estahbanaty A, Baghani M, Arbabi N. Developing an analytical solution for photo-sensitive hydrogel bilayers. Journal of Intelligent Material Systems and Structures. 2018;29(9):1953-1963. [Link] [DOI:10.1177/1045389X18754353]
7. Li H. Kinetics of smart hydrogels responding to electric field: A transient deformation analysis. International Journal of Solids and Structures. 2009;46(6):1326-1333. [Link] [DOI:10.1016/j.ijsolstr.2008.11.001]
8. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature. 2000;404:588-590. [Link] [DOI:10.1038/35007047]
9. Kim D, Beebe DJ. A bi-polymer micro one-way valve. Sensors and Actuators A: Physical. 2007;136(1):426-433. [Link] [DOI:10.1016/j.sna.2006.11.004]
10. Chester SA, Anand L. A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels. Journal of the Mechanics and Physics of Solids. 2011;59(10):1978-2006. [Link] [DOI:10.1016/j.jmps.2011.07.005]
11. He T, Li M, Zhou J. Modeling deformation and contacts of pH sensitive hydrogels for microfluidic flow control. Soft Matter. 2012;8(11):3083-3089. [Link] [DOI:10.1039/c2sm06749h]
12. Cai S, Suo Z. Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. Journal of the Mechanics and Physics of Solids. 2011;59(11):2259-2278. [Link] [DOI:10.1016/j.jmps.2011.08.008]
13. Mazaheri H, Baghani M, Naghdabadi R, Sohrabpour S. Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: Analytical and numerical study. Smart Materials and Structures. 2015;24(4):045004. [Link] [DOI:10.1088/0964-1726/24/4/045004]
14. Kwon GH, Jeong GS, Park JY, Moon JH, Lee SH. A low-energy-consumption electroactive valveless hydrogel micropump for long-term biomedical applications. Lab on a Chip. 2011;11(17):2910-2915. [Link] [DOI:10.1039/c1lc20288j]
15. Zhang Y, Liu Z, Swaddiwudhipong S, Miao H, Ding Z, Yang Z. pH-sensitive hydrogel for micro-fluidic valve. Journal of Functional Biomaterials. 2012;3(3):464-479. [Link] [DOI:10.3390/jfb3030464]
16. Arbabi N, Baghani M, Abdolahi J, Mazaheri H, Mosavi-Mashhadi M. Study on pH-sensitive hydrogel micro-valves: A fluid-structure interaction approach. Journal of Intelligent Material Systems and Structures. 2017;28(12):1589-1602. [Link] [DOI:10.1177/1045389X16679020]
17. Mazaheri H, Namdar A, Amiri A. Behavior of a smart one-way micro-valve considering fluid-structure interaction. Journal of Intelligent Material Systems and Structures. 2018;29(20):3960-3971. [Link] [DOI:10.1177/1045389X18803445]
18. Wu Z, Bouklas N, Huang R. Swell-induced surface instability of hydrogel layers with material properties varying in thickness direction. International Journal of Solids and Structures. 2013;50(3-4):578-587. [Link] [DOI:10.1016/j.ijsolstr.2012.10.022]
19. Shojaeifard M, Bayat MR, Baghani M. Swelling-induced finite bending of functionally graded pH-responsive hydrogels: A semi-analytical method. Applied Mathematics and Mechanics. 2019;40:679-694. [Link] [DOI:10.1007/s10483-019-2478-6]
20. Mazaheri H, Ghasemkhani A. Analytical and numerical study of the swelling behavior in functionally graded temperature-sensitive hydrogel shell. Journal of Stress Analysis. 2019;3(2):29-35. [Link]
21. Shojaeifard M, Rouhani F, Baghani M. A combined analytical-numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels. Journal of Intelligent Material Systems and Structures. 2019;30(13):1882-1895. [Link] [DOI:10.1177/1045389X19849253]
22. Hong W, Zhao X, Zhou J, Suo Z. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids. 2008;56(5):1779-1793. [Link] [DOI:10.1016/j.jmps.2007.11.010]
23. Mazaheri H, Baghani M, Naghdabadi R, Sohrabpour S. Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling. Smart Materials and Structures. 2016;25(8). [Link] [DOI:10.1088/0964-1726/25/8/085034]
24. Afroze F, Nies E, Berghmans H. Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. Journal of Molecular Structure. 2000;554(1):55-68. [Link] [DOI:10.1016/S0022-2860(00)00559-7]
25. Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures. 2009;46(17):3282-3289. [Link] [DOI:10.1016/j.ijsolstr.2009.04.022]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.