1. Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, Babic S. Cortical bone drilling and thermal osteonecrosis. Clinical biomechanics. 2012;27(4):313-325. [
Link] [
DOI:10.1016/j.clinbiomech.2011.10.010]
2. Sui J, Sugita N, Ishii K, Harada K, Mitsuishi M. Mechanistic modeling of bone-drilling process with experimental validation. Journal of Materials Processing Technology. 2014;214(4):1018-1026. [
Link] [
DOI:10.1016/j.jmatprotec.2013.11.001]
3. Tai BL, Palmisano AC, Belmont B, Irwin TA, Holmes J, Shih AJ. Numerical evaluation of sequential bone drilling strategies based on thermal damage. Medical Engineering & Physics. 2015;37(9):855-861. [
Link] [
DOI:10.1016/j.medengphy.2015.06.002]
4. Dahotre NB, Joshi S. Machining of bone and hard tissues. New York City: Springer; 2016. [
Link] [
DOI:10.1007/978-3-319-39158-8]
5. Brehl DE, Dow TA. Review of vibration-assisted machining. Precision Engineering. 2008;32(3):153-172. [
Link] [
DOI:10.1016/j.precisioneng.2007.08.003]
6. Khademi V. Ultrasonic assisted bone drilling [Dissertation]. Tehran: Sharif University of Technology; 2008. [Persian] [
Link]
7. Khademi V, Akbari J, Farahmand F, Masoumi E. S-46 experimental investigation of ultrasonic-assisted bone drilling. Journal of Biomechanics. 2010;43(1):S47-S48. [
Link] [
DOI:10.1016/S0021-9290(10)70099-3]
8. Alam K, Silberschmidt VV. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography. Technology and Health Care. 2014;22(2):243-252. [
Link] [
DOI:10.3233/THC-140813]
9. Alam K, Khan M, Silberschmidt V. Finite element modeling and analysis of ultrasonically-assisted drilling of bone. Proceedings of the 10th International Conference on Computer Modeling and Simulation. California: ACM Digital Library; 2018. pp. 216-220. [
Link] [
DOI:10.1145/3177457.3177500]
10. Alam K, Ahmed N, Silberschmidt VV. Comparative study of conventional and ultrasonically-assisted bone drilling. Technology Health Care. 2014;22(2):253-262. [
Link] [
DOI:10.3233/THC-140814]
11. Alam K, Hassan E, Bahadur I. Experimental measurements of temperatures in ultrasonically assisted drilling of cortical bone. Biotechnology & Biotechnological Equipment. 2015;29(4):753-757. [
Link] [
DOI:10.1080/13102818.2015.1034176]
12. Alam K, Mitrofanov AV, Silberschmidt VV. Experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Medical Engineering & Physics. 201;33(2):234-239. [
Link] [
DOI:10.1016/j.medengphy.2010.10.003]
13. Wang Y, Cao M, Zhao X, Zhu G, McClean C, Zhao Y, et al. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Medical Engineering & Physics. 2014;36(11):1408-1415. [
Link] [
DOI:10.1016/j.medengphy.2014.04.007]
14. Shakouri E, Sadeghi MH, Maerefat M, Karafi MR, Memarpour M. Experimental and analytical investigation of thrust force in ultrasonic assisted drilling of bone. Modares Mechanical Engineering. 2014;14(6):194-200. [Persian] [
Link]
15. Shakouri E, Sadeghi MH, Karafi MR, Maerefat M, Farzin M. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2015;229(2):137-149. [
Link] [
DOI:10.1177/0954411915573064]
16. Shakouri E, Sadeghi MH, Karafi M, Farzin M. Effect of rotatory-vibrational bone drilling in lowering thermal necrosis (an animal study). Iranian Journal of Orthopaedic Surgery. 2014;12(2):53-59. [Persian] [
Link]
17. Gupta V, Pandey PM. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling. Medical Engineering & Physics. 2016;38(11):1330-1338. [
Link] [
DOI:10.1016/j.medengphy.2016.08.012]
18. Gupta V, Pandey PM, Gupta RK, Mridha AR. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017;231(3):189-196. [
Link] [
DOI:10.1177/0954411916688500]
19. Singh G, Jain V, Gupta D, Ghai A. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. Journal of the Mechanical Behavior of Biomedical Materials. 2016;62:355-365. [
Link] [
DOI:10.1016/j.jmbbm.2016.05.015]
20. Vashishth D, Tanner K, Bonfield W. Contribution, development and morphology of microcracking in cortical bone during crack propagation. Journal of Biomechanics. 2000;33(9):1169-1174. [
Link] [
DOI:10.1016/S0021-9290(00)00010-5]
21. Pandey RK, Panda SS. Multi-performance optimization of bone drilling using Taguchi method based on membership function. Measurement. 2015;59:9-13. [
Link] [
DOI:10.1016/j.measurement.2014.09.038]
22. Wang W, Shi Y, Yang N, Yuan X. Experimental analysis of drilling process in cortical bone. Medical Engineering & Physics. 2014;36(2):261-266. [
Link] [
DOI:10.1016/j.medengphy.2013.08.006]
23. Pandey RK, Panda SS. Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. Journal of Intelligent Manufacturing. 2015;26(6):1121-1129. [
Link] [
DOI:10.1007/s10845-013-0844-9]
24. Pandey RK, Panda SS. Optimization of multiple quality characteristics in bone drilling using grey relational analysis. Journal of Orthopaedics. 2015;12(1):39-45. [
Link] [
DOI:10.1016/j.jor.2014.06.003]
25. Staroveski T, Brezak D, Udiljak T. Drill wear monitoring in cortical bone drilling. Medical Engineering & Physics. 2015;37(6):560-566. [
Link] [
DOI:10.1016/j.medengphy.2015.03.014]
26. Matthews LS, Hirsch C. Temperatures measured in human cortical bone when drilling. The Journal of Bone and Joint Surgery. 1972;54(2):297-308. [
Link] [
DOI:10.2106/00004623-197254020-00008]
27. Hou TH, Su CH, Liu WL. Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technology. 2007;173(3):153-162. [
Link] [
DOI:10.1016/j.powtec.2006.11.019]
28. Nekahi A, Dehghani K. Modeling the thermomechanical effects on baking behavior of low carbon steels using response surface methodology. Materials & Design. 2010;31(8):3845-3851. [
Link] [
DOI:10.1016/j.matdes.2010.03.038]
29. Moradi M, Ghoreishi M, Frostevarg J, Kaplan AF. An investigation on stability of laser hybrid arc welding. Optics and Lasers in Engineering. 2013;51(4):481-487. [
Link] [
DOI:10.1016/j.optlaseng.2012.10.016]
30. Moradi M, Ghoreishi M, Torkamany M. Modelling and optimization of Nd: YAG laser and tungsten inert gas (TIG) hybrid welding of stainless steel. Lasers in Engineering (Old City Publishing). 2014;27(3):211-230. [
Link]
31. Montgomery DC. Design and Analysis of Experiments. 8th edition. New Jersey: John Wiley & Sons; 2012. [
Link]
32. Sobol IM. Sensitivity estimates for nonlinear mathematical models. MMCE. 1993;1(4):407-414. [
Link]
33. Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation. 2001;55(1-3):271-280. [
Link] [
DOI:10.1016/S0378-4754(00)00270-6]
34. Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2017;231(11):1012-1024. [
Link] [
DOI:10.1177/0954411917726098]
35. Tahmasbi V, Ghoreishi M, Zolfaghari M. Sensitivity analysis of temperature and force in robotic bone drilling process using Sobol statistical method. Biotechnology & Biotechnological Equipment. 2018;32(1):130-141. [
Link] [
DOI:10.1080/13102818.2017.1403863]
36. Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. 3rd edition. Florida: CRC Press; 2005. [
Link]
37. Altintas Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. 2nd edition. Cambridge: Cambridge University Press; 2012. [
Link]
38. Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Part H: Journal of Engineering in Medicine. 2017;231(11):1012-1024. [
Link] [
DOI:10.1177/0954411917726098]
39. Zolfaghari M, Ghoreishi M, Tahmasbi V. Temperature in bone drilling process: Mathematical modeling and Optimization of effective parameters. International Journal of Engineering-Transactions. 2016;29(7):946-953. [
Link] [
DOI:10.5829/idosi.ije.2016.29.07a.09]