Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1115-1126 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vakili-Tahami F, Khoshravan M, H. Smit T, Rasoulian A. The Anisotropic Effect of Intervertebral Disc Tissue in Confined Compression Test. Modares Mechanical Engineering 2020; 20 (5) :1115-1126
URL: http://mme.modares.ac.ir/article-15-34645-en.html
1- Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran , f_vakili@tabrizu.ac.ir
2- Mechanical Engineering Faculty, University of Tabriz, Tabriz, Iran
3- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
Abstract:   (3693 Views)
The intervertebral discs are of the most important body tissues that provides the required flexibility for the spine during daily activities. Due to the lamellar structure of the Annulus Fibrosus, that surrounds the central part of Nucleus Pulposus, it may show anisotropic behavior in carrying the applied loads. Therefore, this aspect was investigated using the experimental data that were obtained by confined compression relaxation tests on samples in three different directions: Axial, radial and circumferential. To obtain the experimental values of the permeability and aggregate modulus as material parameters, test data in three directions were fit to the constitutive equations that were based on the biphasic relaxation model. The results for the permeability and aggregate modulus in three directions show that the material parameters are almost independent of direction and therefore, it is concluded that AF can be treated as an isotropic material under the compressive loads.
Full-Text [PDF 1021 kb]   (3969 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/07/10 | Accepted: 2019/10/4 | Published: 2020/05/9

References
1. Hart LG, Deyo RA, Cherkin DC. Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine. 1995;20(1):11-19. [Link] [DOI:10.1097/00007632-199501000-00003]
2. Lambeek LC, van Tulder MW, Swinkels IC, Koppes LL, Anema JR, van Mechelen W. The trend in total cost of back pain in The Netherlands in the period 2002 to 2007. Spine. 2011;36(13):1050-1058. [Link] [DOI:10.1097/BRS.0b013e3181e70488]
3. Raj PP. Intervertebral disc: Anatomy‐physiology‐pathophysiology‐treatment. Pain Practice. 2008;8(1):18-44. [Link] [DOI:10.1111/j.1533-2500.2007.00171.x]
4. Kelsey JL, White AA 3rd. Epidemiology and impact of low-back pain. Spine. 1980;5(2):133-142. [Link] [DOI:10.1097/00007632-198003000-00007]
5. White AA 3rd, Gordon SL. Synopsis: Workshop on idiopathic low-back pain. Spine. 1982;7(2):141-149. [Link] [DOI:10.1097/00007632-198203000-00009]
6. Holmes MH, Mow VC. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. Journal of biomechanics. 1990;23(11):1145-1156. [Link] [DOI:10.1016/0021-9290(90)90007-P]
7. Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. Journal of Biomechanics. 1997;30(11-12):1157-1164. [Link] [DOI:10.1016/S0021-9290(97)85606-0]
8. Best BA, Guilak F, Setton LA, Zhu W, Saed-Nejad F, Ratcliffe A, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine. 1994 ;19(2):212-221. [Link] [DOI:10.1097/00007632-199401001-00017]
9. Drost MR, Willems P, Snijders H, Huyghe JM, Janssen JD, Huson A. Confined compression of canine annulus fibrosus under chemical and mechanical loading. Journal of Biomechanical Engineering. 1995;117(4):390-396. [Link] [DOI:10.1115/1.2794197]
10. Frijns AJ, Huyghe JM, Janssen JD. A validation of the quadriphasic mixture theory for intervertebral disc tissue. International Journal of Engineering Science. 1997;35(15):1419-1429. [Link] [DOI:10.1016/S0020-7225(97)00047-5]
11. Houben GB, Drost MR, Huyghe JM, Janssen JD, Huson A. Nonhomogeneous permeability of canine anulus fibrosus. Spine. 1997;22(1):7-16. [Link] [DOI:10.1097/00007632-199701010-00003]
12. Wagner DR, Lotz JC. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. Journal of Orthopaedic Research. 2004;22(4):901-909. [Link] [DOI:10.1016/j.orthres.2003.12.012]
13. Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE. Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagittal flexion: Effect of loading rate. Spine. 2000;25(3):310-318. [Link] [DOI:10.1097/00007632-200002010-00009]
14. Nikkhoo M, Haghpanahi M, Wang JL, Parnianpour M. A poroelastic finite element model to describe the time-dependent response of lumbar intervertebral disc. Journal of Medical Imaging and Health Informatics. 2011;1(3):246-251. [Link] [DOI:10.1166/jmihi.2011.1035]
15. Schmidt H, Bashkuev M, Galbusera F, Wilke HJ, Shirazi-Adl A. Finite element study of human lumbar disc nucleus replacements. Computer Methods in Biomechanics and Biomedical Engineering. 2014;17(16):1762-1776. [Link] [DOI:10.1080/10255842.2013.766722]
16. Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. Journal of Biomechanics. 2018;70:16-25. [Link] [DOI:10.1016/j.jbiomech.2017.10.032]
17. Nikkhoo M, Wang JL, Parnianpour M, El-Rich M, Khalaf K. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading-ex-vivo and in-silico investigation. Journal of Biomechanics. 2018;70:26-32. [Link] [DOI:10.1016/j.jbiomech.2018.01.026]
18. Mosayebi M, Mojra A. Assessing time-dependent response of intact and degenerated cervical intervertebral discs by employing a poroviscoelastic model based on experimental relaxation data. Iranian Journal of BioMedical Engineering. 2019;13(1):21-30. [Persian] [Link]
19. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine. 1997;22(24):2823-2833. [Link] [DOI:10.1097/00007632-199712150-00005]
20. Holmes MH, Lai WM, Mow VC. Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. Journal of Biomechanical Engineering. 1985;107(3):206-218. [Link] [DOI:10.1115/1.3138545]
21. Holmes MH. Finite deformation of soft tissue: Analysis of a mixture model in uni-axial compression. Journal of Biomechanical Engineering. 1986;108(4):372-381. [Link] [DOI:10.1115/1.3138633]
22. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. Journal of Biomechanical Engineering. 1980 Feb 1;102(1):73-84. [Link] [DOI:10.1115/1.3138202]
23. Mow VC, Holmes MH, Lai WM. Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics. 1984;17(5):377-394. [Link] [DOI:10.1016/0021-9290(84)90031-9]
24. Mow VC, Kwan MK, Lai WM, Holmes MH. A finite deformation theory for nonlinearly permeable soft hydrated biological tissues. In: Schmid-Schönbein GW, Woo SL, Zweifach BW, editors. Frontiers in Biomechanics. New York, NY: Springer; 1986. pp. 153-179. [Link] [DOI:10.1007/978-1-4612-4866-8_13]
25. Vakil-Tahami F, Rasoulian A, Mohammad Alizadeh Fard A. Obtaining the creep constitutive parameters for the layers of butt-welded 1.25Cr0.5Mo pipe. Modares Mechanical Engineering. 2015;15(9):407-416. [Persian] [Link]
26. Saadatmand Hashemi S, Asgari M. Development and Calibration of 3D Constitutive Equations for Nonlinear Passive Multi-Axial Finite Deformations of Skeletal Muscles. Modares Mechanical Engineering. 2016;16(9):298-306. [Persian] [Link]
27. Chatterjee S, Hadi AS. Regression analysis by example. 5th Edition. Hoboken, New Jersey: John Wiley & Sons; 2013. [Link]
28. Vakili-Tahami F, Rasoulian A, Hashemi SS. Optimization methods for the weight of Agusta helicopter main gearbox. University of Tabriz Mechanical Engineering. 2018;48(3):347-354. [Persian] [Link]
29. Vakili-Tahami F, Qadim RH, Rasoulian A. Pareto discrete-continuous optimization of Sikorsky ASH-3D helicopter main gearbox. Modares Mechanical Engineering. 2015;14(16):170-180. [Persian] [Link]
30. Wilke HJ, Kettler A, Wenger KH, Claes LE. Anatomy of the sheep spine and its comparison to the human spine. The Anatomical Record. 1997;247(4):542-555. https://doi.org/10.1002/(SICI)1097-0185(199704)247:4<542::AID-AR13>3.0.CO;2-P [Link] [DOI:10.1002/(SICI)1097-0185(199704)247:43.0.CO;2-P]
31. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schröder R,et al. Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine. 2001;26(9):1028-1037. [Link] [DOI:10.1097/00007632-200105010-00008]
32. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine. 2008;33(6):E166-E173. [Link] [DOI:10.1097/BRS.0b013e318166e001]
33. Hoogendoorn RJ, Wuisman PI, Smit TH, Everts VE, Helder MN. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine. 2007;32(17):1816-1825. [Link] [DOI:10.1097/BRS.0b013e31811ebac5]
34. Krijnen MR, Mensch D, van Dieen JH, Wuisman PI, Smit TH. Primary spinal segment stability with a stand-alone cage: In vitro evaluation of a successful goat model. Acta Orthopaedica. 2006 ;77(3):454-461. [Link] [DOI:10.1080/17453670610046398]
35. Klisch SM, Lotz JC. A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. Journal of Biomechanical Engineering. 2000;122(2):180-188. [Link] [DOI:10.1115/1.429640]
36. Yao H, Justiz MA, Flagler D, Gu WY. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Annals of Biomedical Engineering. 2002;30(10):1234-1241. [Link] [DOI:10.1114/1.1523920]
37. Périé D, Korda D, Iatridis JC. Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: Sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. Journal of Biomechanics. 2005;38(11):2164-2171. [Link] [DOI:10.1016/j.jbiomech.2004.10.002]
38. Freeman AL, Buttermann GR, Beaubien BP, Rochefort WE. Compressive properties of fibrous repair tissue compared to nucleus and annulus. Journal of Biomechanics. 2013;46(10):1714-1721. [Link] [DOI:10.1016/j.jbiomech.2013.03.034]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.