Fabrication of hybrid nanocomposite Al2024/Gr/ZrO₂ via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties

Saeed Ahmadifard, Masoud Roknian, Taleb Tinati Seresht, Shahab Kazemi

ARTICLE INFORMATION

Original Research Paper
Received 17 February 2016
Accepted 23 April 2016
Available Online 14 June 2016

Keywords: Friction stir processing Hybrid nanocomposite Mechanical properties Al2024

Abstract

Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nano composites of Al2024, graphite average particle size of 15 nm with different hybrid ratios were fabricated by friction stir processing method. For fabrication of nano composite the tool rotation rate was set to be 1000 rpm, and tilt angle of 3 degrees were chosen. All samples were subjected to 2 passes of FSP to obtain more homogeneous dispersion of the reinforcements. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nano composites was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples and showed that reinforcements are well dispersed inside the Nugget Zone. Hardness Vickers value measurements and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nano composites.

Fabrication of hybrid nanocomposite Al2024/Gr/ZrO₂ via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties

Saeed Ahmadifard, Masoud Roknian, Taleb Tinati Seresht, Shahab Kazemi

ARTICLE INFORMATION

Original Research Paper
Received 17 February 2016
Accepted 23 April 2016
Available Online 14 June 2016

Keywords: Friction stir processing Hybrid nanocomposite Mechanical properties Al2024

Abstract

Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nano composites of Al2024, graphite average particle size of 15 nm with different hybrid ratios were fabricated by friction stir processing method. For fabrication of nano composite the tool rotation rate was set to be 1000 rpm, and its advancing speed was 20 mm/min and tilt angle of 3 degrees were chosen. All samples were subjected to 2 passes of FSP to obtain more homogeneous dispersion of the reinforcements. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nano composites was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples and showed that reinforcements are well dispersed inside the Nugget Zone. Hardness Vickers value measurements and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nano composites.

Fabrication of hybrid nanocomposite Al2024/Gr/ZrO₂ via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties

Saeed Ahmadifard, Masoud Roknian, Taleb Tinati Seresht, Shahab Kazemi

ARTICLE INFORMATION

Original Research Paper
Received 17 February 2016
Accepted 23 April 2016
Available Online 14 June 2016

Keywords: Friction stir processing Hybrid nanocomposite Mechanical properties Al2024

Abstract

Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nano composites of Al2024, graphite average particle size of 15 nm with different hybrid ratios were fabricated by friction stir processing method. For fabrication of nano composite the tool rotation rate was set to be 1000 rpm, and its advancing speed was 20 mm/min and tilt angle of 3 degrees were chosen. All samples were subjected to 2 passes of FSP to obtain more homogeneous dispersion of the reinforcements. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nano composites was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples and showed that reinforcements are well dispersed inside the Nugget Zone. Hardness Vickers value measurements and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nano composites.

Fabrication of hybrid nanocomposite Al2024/Gr/ZrO₂ via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties

Saeed Ahmadifard, Masoud Roknian, Taleb Tinati Seresht, Shahab Kazemi

ARTICLE INFORMATION

Original Research Paper
Received 17 February 2016
Accepted 23 April 2016
Available Online 14 June 2016

Keywords: Friction stir processing Hybrid nanocomposite Mechanical properties Al2024

Abstract

Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nano composites of Al2024, graphite average particle size of 15 nm with different hybrid ratios were fabricated by friction stir processing method. For fabrication of nano composite the tool rotation rate was set to be 1000 rpm, and its advancing speed was 20 mm/min and tilt angle of 3 degrees were chosen. All samples were subjected to 2 passes of FSP to obtain more homogeneous dispersion of the reinforcements. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nano composites was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples and showed that reinforcements are well dispersed inside the Nugget Zone. Hardness Vickers value measurements and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nano composites.

Fabrication of hybrid nanocomposite Al2024/Gr/ZrO₂ via FSP and evaluation effect role of hybrid ratio in mechanical and wear properties

Saeed Ahmadifard, Masoud Roknian, Taleb Tinati Seresht, Shahab Kazemi

ARTICLE INFORMATION

Original Research Paper
Received 17 February 2016
Accepted 23 April 2016
Available Online 14 June 2016

Keywords: Friction stir processing Hybrid nanocomposite Mechanical properties Al2024

Abstract

Hybrid ratio of each reinforcement phase in hybrid composite can be defined as proportion of its volume to total reinforcement volume of the composite. The hybrid ratio is an important factor which controls the participation extent of each reinforcement phase in overall properties of hybrid composites. Hence, in the present work, surface hybrid nano composites of Al2024, graphite average particle size of 15 nm with different hybrid ratios were fabricated by friction stir processing method. For fabrication of nano composite the tool rotation rate was set to be 1000 rpm, and its advancing speed was 20 mm/min and tilt angle of 3 degrees were chosen. All samples were subjected to 2 passes of FSP to obtain more homogeneous dispersion of the reinforcements. Subsequently, effect of hybrid ratio on microstructural, mechanical and tribological properties of the nano composites was investigated. Optical microscopy and scanning electron microscopy were utilized to perform microstructural observation on the samples and showed that reinforcements are well dispersed inside the Nugget Zone. Hardness Vickers value measurements and pin on disk dry sliding wear tests were carried out to investigate effect of hybrid ratio on mechanical and tribological properties of the nano composites.
تعیین نمونه‌های انسانی: در این پژوهش، قرار گرفتن نمونه‌های میوه انسانی در دو گروه گرفته شد. گروه آزمون شامل نمونه‌هایی بود که در بهترین شرایط جغرافیایی و بستری در سطح بالا قرار گرفته بودند. گروه تحكم شامل نمونه‌هایی بود که در شرایط کمتر از بهترین شرایط قرار گرفته بودند.

1. گروه آزمون: 10 نمونه
2. گروه تحكم: 10 نمونه

به شکل زیر نشان داده می‌شود:

group 1: 10 samples

group 2: 10 samples

group 1

group 2

Fig. 1 Schematic illustration of FSP technique

شکل 1 مثال‌هایی از تشویق تکریک فلایوری انسانی

ملکه‌بیک ماس، دیروز 1394، دانشگاه علوم پزشکی تهران
ابزار مورد استفاده از جنس فولاذ گرم کار (13) انتخاب شد. تکنیک قابل توجه این است که با انجام سوخانی به یک از نمودارهای زیر استفاده می‌شود. ابتدا برنامه قطع شده، نقطه‌بندی و ارتفاع مورد انتخاب به ترتیب 20 میلی‌متر و 4 میلی‌متر در نظر گرفته شد. در هر 5 نمونه از ابزار نمونه‌برداری شده و همچنین ابعاد آن از هر نمونه است. برای انجام فرآیند از سرعتی 1000 دور بر دقیقه و یک دوره 20 میلی‌متر بر دقیقه و زاویه انحراف 18 درجه انجام شد. سپس به سیستم‌های 2020 سینادزی و پلاس برای ساخت گرد صفحه نمونه‌ها از محلول کلر ۱ کربنات قرار گرفته‌اند. در زیر آنها مانند تهیه‌نگهداری شده است. سپس برای بررسی استخراج از میکروسکوپ نوری (مدل آی‌آریو) و میکروسکوپ الکترونی روزمتیک (مدل پلوی) که قادر به حفظ آنالیز عبوری بود استفاده گردید. برای کسب آماری از نمونه‌های فضایی شده ۱۰ نمونه به نسبت استاندارد ۸۳۴ استاندارد ASTM E384 با روشهای مشترک و مطابق با استاندارد معمول و با اعمال ۲۰۰ گرم و به مدت زمان ۲۰ ثانیه همچنین با استاندارد ASTM F2024 در بدنه مخاب و ماده اعمایی ۱۰۰۰ متر و از همراه با استاندارد G89 نمونه با سرعتی ۰.۱۴ متر بر دقیقه و فاصله زمانی ۱۰۰۰ متر و از همراه با استاندارد ۲۰۰۰ متر است. آرکا صباعی در از ویژگیات و بررسی شده قابل بررسی می‌باشد. مراحل جداکننده از جنس فولاذ\\n\\n\[\text{جدول ۱ نرخ مخلوط پودرها}\\n\]

<table>
<thead>
<tr>
<th>ماده</th>
<th>ZrO۲</th>
<th>Gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰</td>
<td>۰</td>
<td></td>
</tr>
<tr>
<td>۸۰</td>
<td>۲۵</td>
<td></td>
</tr>
<tr>
<td>۵۰</td>
<td>۵۰</td>
<td></td>
</tr>
<tr>
<td>۲۵</td>
<td>۷۵</td>
<td></td>
</tr>
</tbody>
</table>
\\n\[\text{جدول ۲ ترکیب شیمیایی آلومینیوم ۲۰۲۴}\\n\]

<table>
<thead>
<tr>
<th>ماده</th>
<th>Al</th>
<th>Mg</th>
<th>Mn</th>
<th>Se</th>
<th>Si</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراز</td>
<td>۱.۵۵</td>
<td>۰.۶۲</td>
<td>۰.۲۹</td>
<td>۰.۰۹۱</td>
<td>۵.۳۵</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{جدول ۳ ترکیب شیمیایی حلول حاکم}\\n\]

<table>
<thead>
<tr>
<th>محلول</th>
<th>HNO۳</th>
<th>H۲O</th>
<th>HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۵ ملی‌لیتر</td>
<td>۲.۵ ملی‌لیتر</td>
<td>۱ ملی‌لیتر</td>
<td>۱.۵ ملی‌لیتر</td>
</tr>
</tbody>
</table>

\[\text{جدول ۴ ترکیب شیمیایی آلومینیوم ۲۰۲۴}\\n\]

<table>
<thead>
<tr>
<th>ماده</th>
<th>Al</th>
<th>Mg</th>
<th>Mn</th>
<th>Se</th>
<th>Si</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراز</td>
<td>۱.۵۵</td>
<td>۰.۶۲</td>
<td>۰.۲۹</td>
<td>۰.۰۹۱</td>
<td>۵.۳۵</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{جدول ۳ ترکیب شیمیایی حلول حاکم}\\n\]

<table>
<thead>
<tr>
<th>محلول</th>
<th>HNO۳</th>
<th>H۲O</th>
<th>HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۵ ملی‌لیتر</td>
<td>۲.۵ ملی‌لیتر</td>
<td>۱ ملی‌لیتر</td>
<td>۱.۵ ملی‌لیتر</td>
</tr>
</tbody>
</table>

\[\text{جدول ۴ ترکیب شیمیایی آلومینیوم ۲۰۲۴}\\n\]

<table>
<thead>
<tr>
<th>ماده</th>
<th>Al</th>
<th>Mg</th>
<th>Mn</th>
<th>Se</th>
<th>Si</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>تراز</td>
<td>۱.۵۵</td>
<td>۰.۶۲</td>
<td>۰.۲۹</td>
<td>۰.۰۹۱</td>
<td>۵.۳۵</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{جدول ۳ ترکیب شیمیایی حلول حاکم}\\n\]

<table>
<thead>
<tr>
<th>محلول</th>
<th>HNO۳</th>
<th>H۲O</th>
<th>HCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹۵ ملی‌لیتر</td>
<td>۲.۵ ملی‌لیتر</td>
<td>۱ ملی‌لیتر</td>
<td>۱.۵ ملی‌لیتر</td>
</tr>
</tbody>
</table>
3- نتایج و بحث

3-1- ریسک‌سنجی

شکل 6 تصویر میکروسکوپ از سطح مقطع نمونه‌های فرآوری شده که حاوی 100% زرناک ایست را نشان می‌دهد. در این شکل نقاط مختلفی از قبیل ناحیه افتتاحیه، ناحیه ترمومکانیکی، و فاز بای‌های مشخص شده است. در ناحیه افتتاحیه، دانه‌های اصلی و مزدوج‌های فری جای خود را دارند. به‌طور نظیری ناحیه ترمومکانیکی، جیگالی ناحیه‌ای کمی دیده می‌شود و در بافت‌های ترمومکانیکی رابطه‌های فری و مزدوج‌های فری می‌باشد.

شکل 7 تصویر میکروسکوپ نوری سطح مقطع نمونه‌ها از ناحیه فرآوری شده (الف) (25% Gr، 75% ZrO2) (ب) (25% Gr، 75% ZrO2، 50% ZrO2) (پ) (25% Gr، 75% ZrO2، 50% ZrO2، 100% ZrO2)

شکل دهم در آلبوم‌های ویژه، تغییر شکل دید در این ناحیه دیده می‌شود که تغییر مکانیکی در مصالح از تغییر روتاتور و فاز بای‌های مشخص است که به این ناحیه می‌تواند منجر به تغییر روتاتور و فاز بای‌های مشخص شود.

شکل 8 تصویر میکروسکوپ الکترونی بر روی نمونه‌های کیفیتی که دارای 100% زرناکیت، 75% زرناکیت و 25% کراتیت است نشان می‌دهد. همان‌طور که در تصویر مشخص است، تغییر ذرات در زمان بگونه‌ای این ناحیه آشکار نمی‌شود و نتایج نشان می‌دهد که در زمان استفاده زرناکیت و کراتیت این مشخصات در تصویر مشخص است که در ناحیه ترمومکانیکی سطح افتتاحیه در اثر افتتاحیه و فشار شدیدی که در این ناحیه دیده می‌شود، که نسبت به فاز بای‌های افتتاحیه مشخص است.

شکل نهم در ناحیه ترمومکانیکی ماده تحت تغییر شکل بلای‌سکی قرار گرفته است.

Table 4 Average grain size of different samples

<table>
<thead>
<tr>
<th>ZrO2 (%)</th>
<th>Cr (%)</th>
<th>ZrO2 (%)</th>
<th>Cr (%)</th>
<th>ZrO2 (%)</th>
<th>Cr (%)</th>
<th>Average Grain Size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>0%</td>
<td>75%</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>75%</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td>9.7</td>
<td></td>
<td>12.5</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

شکل 6 تصویر مکرو از سطح مقطع نام‌کانوپیت (الف) فاز بای‌های (پ) ناحیه افتتاحیه (ج) ترمومکانیکی

1- سیر زون (SZ)
2- ترمومکانیکی (BAM)
3- مکانیکی ترمومکانیکی (TM)
4- پینینگ
Fig. 8 SEM micrograph of the SZ (a) 100% ZrO$_2$ (b) 75% ZrO$_2$, 25% Gr with EDS analysis

Fig. 9 Microhardness profiles of Al2024/Gr/ZrO$_2$ nanocomposite (a) surface (b) cross section of specimens

1. Orowan
پایه عبارت دیگر سطح نماس واقعی بین سطح نمونه و پیو ساینده آزایش پیدا کرده و به مقادیر واقعی خود نزدیک یک نشود باعث پیشرفت کردن ماده از سطح نمونه می‌شود و در نتیجه میزان نرخ سیاسی و کاهش وزن نمونه آزایش کمتر می‌کند.

شکل 14 نمایانگر نرخ سیاسی بر حسب نسبت افزایش (1 نیوتن) را نشان می‌دهد. این نمودار نشان می‌دهد که با افزایش درصد گرافیت میزان نرخ سیاسی کاهش یافته است.

![شکل 10 تغییرات کاهش وزن بر حسب ساختار لغزش](image10)

![شکل 11 تغییرات کاهش وزن بر حسب ساختار لغزش](image11)

![شکل 12 تغییرات ضربه بین کاهش وزن بر حسب ساختار لغزش](image12)

روانکار در سطح باعث این حالات شده و در نتیجه باعث بهبود مقاومت به سیاسی می‌شود. همچنین سطح غیر از آنکه با افزایش میزان فرایندهای زیرکونیا مقاومت به سیاسی کم شده این انتها که در مرحله خارج شده و باعث ایجاد کرده یک فرآیند سیاسی با بهبود سازمان می‌شود.

نمونه بهینه که در حد 70% گرافیت و 25% زیرکونیا بود در برخی اعمال 5 و 10 نیوتن میرا بررسی گرفت و در شکل 13 افوند نیمات نرخ سیاسی کاهش وزن را نشان می‌دهد که با افزایش اعمال میزان کاهش وزن و نرخ سیاسی افزایش یافته است که این یک کاهش طبیعی به سبب می‌آید. جون با افزایش بر اعمال میزان فرد نمود ماده ساینده آزایش یافته.
Fig. 15 SEM images of the worn surfaces (a) BM (b) 100% ZrO$_2$ (c) 25% ZrO$_2$, 75% Gr (d) 50% ZrO$_2$, 50% Gr (e) 25% ZrO$_2$, 75% Gr (f) 100% ZrO$_2$, 75% Gr

5-100-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

9-

