Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1127-1143 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sayahbadkhor M, Vahedi K, Naddaf Oskouei A. New Analytical Model Presentation and Numerical Investigation of Ballistic Impact on Ceramic/Metal Semi-Infinite Perforated Targets. Modares Mechanical Engineering 2020; 20 (5) :1127-1143
URL: http://mme.modares.ac.ir/article-15-35156-en.html
1- Mechanical Engineering Department, Engineering Faculty, Imam Hossein Comprehensive University, Tehran, Iran
2- Mechanical Engineering Department, Engineering Faculty, Imam Hossein Comprehensive University, Tehran, Iran , khvahedi@ihu.ac.ir
Abstract:   (2030 Views)
Efforts to reduce the ballistic effects and achieve the good results have always been important. In this article, perforated targets were used in order to reduce the penetration depth of projectile. The use of these targets in the case of high-speed projectiles reduces the number of parameters, such as penetration depth, cost of target products, and target area density. The goal of this paper was to present a new and complete analytical model for projectile penetration in ceramic/metal semi-infinite perforated targets, based on the Fellows analytical model, one of the most important models for penetration. First, the Fellows model was modified for ceramic/metal semi-infinite none-perforated targets. This modified model, while perfectly improving the results of the penetration depth at low speeds and had a better fit with experimental results at high speeds. In the new analytical model, 7 different states were considered for the projectile to impact the perforated target. In each of these states, the angle of oblique and the speed of the projectile after reaching the metal varied with respect to the ceramic thickness and the speed of the projectile's impact. Regarding the oblique impact on the metal, corrected relations were rewritten for new conditions. Finally, the depth of penetration was achieved according to the target conditions. The numerical simulation in Abaqus software was used to compare the results. The results of the new analytical model has good agreement with numerical simulation.
Full-Text [PDF 1498 kb]   (1514 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/07/25 | Accepted: 2019/10/4 | Published: 2020/05/9

References
1. Florence AL, Ahrens T. Interaction of projectiles and composite armor. United States: Defense Technical Information Center; 1969. [Link] [DOI:10.21236/AD0698543]
2. Tate A. A theory for the deceleration of long rods after impact. Journal of the Mechanics and Physics of Solids. 1967;15(6):387-399. [Link] [DOI:10.1016/0022-5096(67)90010-5]
3. Wilkins ML. Mechanics of penetration and perforation. International Journal of Engineering Science. 1978;16(11):793-807. [Link] [DOI:10.1016/0020-7225(78)90066-6]
4. Jonas G, Zukas JA. Mechanics of penetration: analysis and experiment. International Journal of Engineering Science. 1978;16(11):879-903. [Link] [DOI:10.1016/0020-7225(78)90073-3]
5. Backman ME, Goldsmith W. The mechanics of penetration of projectiles into targets. International Journal of Engineering Science. 1978;16(1):1-99. [Link] [DOI:10.1016/0020-7225(78)90002-2]
6. Ravid M, Bodner S. Dynamic perforation of viscoplastic plates by rigid projectiles. International Journal of Engineering Science. 1983;21(6):577-591. [Link] [DOI:10.1016/0020-7225(83)90105-2]
7. Bless S, Rosenberg Z, Yoon B. Hypervelocity penetration of ceramics. International Journal of Impact Engineering. 1987;5(1-4):165-171. [Link] [DOI:10.1016/0734-743X(87)90036-4]
8. Woodward RL. A simple one-dimensional approach to modelling ceramic composite armour defeat. International Journal of Impact Engineering. 1990;9(4):455-474. [Link] [DOI:10.1016/0734-743X(90)90035-T]
9. Den Reijer PC. Impact on ceramic faced armour [Dissertation]. Delft University of Technology: TU Delft; 1991. [Link]
10. Zaera R, Sánchez-Gálvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. International Journal of Impact Engineering. 1998;21(3):133-148. [Link] [DOI:10.1016/S0734-743X(97)00035-3]
11. Fellows N, Barton P. Development of impact model for ceramic-faced semi-infinite armour. International journal of impact engineering. 1999;22(8):793-811. [Link] [DOI:10.1016/S0734-743X(99)00017-2]
12. Diederen A, Broos J, Peijen M. Modern armour configurations against 14.5 mm AP. Lightweight Armour Systems Symposium. Shrivenham, United Kingdom: Publisher??; 1999. [Link]
13. Chen X, Li Q. Deep penetration of a non-deformable projectile with different geometrical characteristics. International Journal of Impact Engineering. 2002;27(6):619-637. [Link] [DOI:10.1016/S0734-743X(02)00005-2]
14. Chen X, Li Q. Perforation of a thick plate by rigid projectiles. International Journal of Impact Engineering. 2003;28(7):743-759. [Link] [DOI:10.1016/S0734-743X(02)00152-5]
15. Chen X, Li Q, Fan S. Oblique perforation of thick metallic plates by rigid projectiles. Acta Mechanica Sinica. 2006;22(4):367-76. [Link] [DOI:10.1007/s10409-006-0015-8]
16. Rosenberg Z, Ashuach Y, Dekel E. More on the ricochet of eroding long rods-Validating the analytical model with 3D simulations. International Journal of Impact Engineering. 2007;34(5):942-957. [Link] [DOI:10.1016/j.ijimpeng.2006.04.005]
17. Balos S, Grabulov V, Sidjanin L, Pantic M. Wire fence as applique armour. Materials & Design. 2010;31(3):1293-1301. [Link] [DOI:10.1016/j.matdes.2009.09.013]
18. Balos S, Grabulov V, Sidjanin L, Pantic M, Radisavljevic I. Geometry, mechanical properties and mounting of perforated plates for ballistic application. Materials & Design. 2010;31(6):2916-2924. [Link] [DOI:10.1016/j.matdes.2009.12.031]
19. Mishra B, Ramakrishna B, Jena P, Kumar KS, Madhu V, Gupta NK. Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact. Materials & Design. 2013;43:17-24. [Link] [DOI:10.1016/j.matdes.2012.06.037]
20. Radisavljevic I, Balos S, Nikacevic M, Sidjanin L. Optimization of geometrical characteristics of perforated plates. Materials & Design. 2013;49:81-89. [Link] [DOI:10.1016/j.matdes.2012.12.010]
21. Kılıç N, Bedir S, Erdik A, Ekici B, Taşdemirci A, Güden M. Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile. Materials & Design. 2014;63:427-438. [Link] [DOI:10.1016/j.matdes.2014.06.030]
22. Babaei H, Mostofi TM, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [Link] [DOI:10.1016/j.tws.2016.06.013]
23. Mostofi TM, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [Link] [DOI:10.1016/j.tws.2016.12.014]
24. Kılıç N, Ekici B, Bedir S. Optimization of high hardness perforated steel armor plates using finite element and response surface methods. Mechanics of Advanced Materials and Structures. 2017;24(7):615-624. [Link] [DOI:10.1080/15376494.2016.1196771]
25. Fras T, Faderl N. Influence of add-on perforated plates on the protective performance of light-weight armour systems. 2018;9(31):31-48. [French] [Link] [DOI:10.5604/01.3001.0011.7177]
26. Johnson GR, Cook WH, Johnson G, Cook W. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics. Berlin: ScienceOpen Inc.; 1983. pp. 541-547. [Link]
27. Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1):31-48. [Link] [DOI:10.1016/0013-7944(85)90052-9]
28. List G, Sutter G, Arnoux JJ. Analysis of the high speed sliding interaction between titanium alloy and tantalum. Wear. 2013;301(1-2):663-670. [Link] [DOI:10.1016/j.wear.2012.11.070]
29. Holmquist TJ, Templeton DW, Bishnoi KD. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. International Journal of Impact Engineering. 2001;25(3):211-231. [Link] [DOI:10.1016/S0734-743X(00)00046-4]
30. Cronin DS, Bui K, Kaufmann C, McIntosh G, Berstad T, Cronin D. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna. 4th European LS-DYNA Users Conference. Germany: DYNAmore; 2003. [Link]
31. Alipour R, Najarian F. A FEM study of explosive welding of double layer tubes. International Scholarly and Scientific Research & Innovation. 2011;5(1):183-185. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.