Investigation of the Performance Characteristics of the Steam Jet Ejectors with Various Expansion Ratios

Mohsen Kazemi¹, Mojtaba Tahani²*, Sasan Davoodi³

1, 2: Faculty of New Science and Technology, University of Tehran, Tehran, Iran
3: Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

P.O.B: 156114395, Tehran, Iran, m.tahani@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 15 March 2016
Accepted 23 May 2016
Available Online 28 June 2016

Keywords:
Ejectors
Expansion wave
compression ratio
throat diffuser
Flow ratio

ABSTRACT

Steam jet ejectors are an essential part in refrigeration and air conditioning, desalination, petroleum refining, petrochemical and chemical industries. A greater understanding of flow physics inside an ejector plays an important role in improving its performance. In this study, analytical algorithm is developed for design of steam ejectors. The algorithm gives the flow ratio (motoric to suction flow rate) as a function of the expansion ratio and the pressures of the entrained vapor, motive steam and compressed vapor. The compression ratio and back pressure variations were studied in ejector flow ratio with expansion ratio of 5 and 50. It was shown that compression ratio increases by increasing the flow ratio. Also, in a similar flow rate, compression ratio for ejector with expansion ratio of 50 is greater than compression ratio in the ejector with expansion ratio of 50, due to more vacuum in the case with expansion ratio 50. The code results were then compared with experimental results that were in agreement with other results.

Finally, Mach number variations from nozzle exit to discharge diffuser were obtained by code. Results revealed that the pressurized condition causes the expansion angle to lessen, thus resulting in smaller jet core and larger effective area. The expanded wave is further accelerated at a lower Mach number. Therefore, the moment of the jet core is reduced. However, the enlarged effective area allows a larger amount of secondary fluid to be entrained.

Please cite this article using:
به طور کلی، مکانیزم اجکتور در دو نوع مکانیکی و الکتریکی عمل می‌کند. این دو نوع از اجکتورها شامل اجکتورها با پایه عالی و پایه پایینی هستند.

شکل 1 نمودار مکانیزم اجکتور با پایه عالی

شکل 2 نمودار مکانیزم اجکتور با پایه پایینی

به طور کلی، این اجکتورها می‌توانند در سیستم‌های مختلفی از جمله سیستم‌های پایینی، روانکنده‌های نیروگیر و سیستم‌های عالی، عمل کنند. این اجکتورها برای کنترل نیرو، جریان، تغییرات فشار و فرکانس در سیستم‌های مختلفی مناسب هستند.

شکل 3 نمودار مکانیزم اجکتور با پایه عالی

به طور کلی، این اجکتورها می‌توانند در سیستم‌های مختلفی از جمله سیستم‌های پایینی، روانکنده‌های نیروگیر و سیستم‌های عالی، عمل کنند. این اجکتورها برای کنترل نیرو، جریان، تغییرات فشار و فرکانس در سیستم‌های مختلفی مناسب هستند.
1) بخار محرک بسته آبی‌مرطوبیک در نازل مناسبی می‌شود.

2) بخار محرک و مکش اطلاعات و اطلاعات از جلوه‌های فیزیکی و قابلیتی صوتی است.

3) جریان ادایی‌کنک است (در خروجی نازل مکش است دما سپاری است.) باین باید به همین دلیل از چک برای پایگاه و جلوگیری از دیافتر و فشار کار.

4) در نازل، دیافتر و بخار محرک و خنثیکه دهم در نازل و مولکول و نسبت گرمایی بیشتری‌تری ترسند.

5) مولکول فرمایش بسته می‌شود.

6) سرعت جریان بخاری در نازل.

7) محدوده‌ی اخلاط

8) محدوده‌ی از طراف بخار و خنثیکه دهم در نازل و دیافتر.

9) محدوده‌ی اخلاط: صورت بسته باید ترسند.

10) محدوده‌ی اخلاط.

11) محدوده‌ی اخلاط:

12) خواص محرک بسته آبی‌مرطوبیک در نازل مناسبی می‌شود.
بنابراین دیفیوزر را بزگ‌تر از یک انتخاب می‌کنید.

ملخص کتابخانه: به‌کارگیری اجزایی از جریان فلز و ساختار اجزای پیچیده، ایجاد حکم و جریان اجکتور در نسبت جریان های مخلوط و جریان فراوان در بخش و در دو دیفیوزر است (10). گزارش‌های عمده ودیده مخلوط اجکتور نیاز به تدوین الگوریتم و کد دقیق و سریع جهت استفاده این دستگاه، ضروری بوده است.

4. 3- الگوریتم طراحی

Table 1 Analytical code input parameters

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, y</td>
<td></td>
</tr>
<tr>
<td>p_p, p_e</td>
<td></td>
</tr>
<tr>
<td>r, r'</td>
<td></td>
</tr>
<tr>
<td>T_e, T_m</td>
<td></td>
</tr>
</tbody>
</table>

1. 1- محاسبه عددهای حرکت نازل (M_0) و جریان نازل در نازلی، بر اساس جریان اجکتور و فشار حرکت در دو دیفیوزر.

2. 2- محاسبه عددهای حرکت نازل (M_0) و جریان نازل در نازلی، بر اساس جریان اجکتور و فشار حرکت در دو دیفیوزر.

3. محاسبه عددهای حرکت نازل (M_0) و جریان نازل در نازلی، بر اساس جریان اجکتور و فشار حرکت در دو دیفیوزر.

4. محاسبه عددهای حرکت نازل (M_0) و جریان نازل در نازلی، بر اساس جریان اجکتور و فشار حرکت در دو دیفیوزر.

5. محاسبه عددهای حرکت نازل (M_0) و جریان نازل در نازلی، بر اساس جریان اجکتور و فشار حرکت در دو دیفیوزر.
شکل 5 تغییرات نسبت نتایج (k) بر حسب نسبت جریان (w) در نسبت اباضت 50

شکل 4 تغییرات نسبت نتایج (k) بر حسب نسبت جریان (w) در نسبت اباضت 5

متن کامل مقاله مربوط به این مقاله در مقاله‌ی دریافتی به چاپ درست نمی‌شود.
شکل 6 تغییرات فشار پشت دیفیورز بر حسب نسبت جریان (w) در نسبت ایجاد 5

شکل 7 تغییرات Mach Number از مخرج نازل تا ناحیه اخراج

$$\text{Mach Number}$$

$$\text{Sonic Line}$$

$$location \text{ in the ejector}$$

$$w, m_p/m_e$$

$$Gaussian data$$

Code Results

$$\text{Fig. 6 variations of back pressure with flow ratio at expansion ratio 5}$$

$$\text{Fig. 7 variations of Mach number from nozzle exit to discharge ejector with flow ratio 3 and expansion ratio 50}$$

