Volume 20, Issue 5 (May 2020)                   Modares Mechanical Engineering 2020, 20(5): 1245-1254 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kheirkhahan M, Hosseini K, Omidvar P. Modeling two phase dense flow containing cohesive sediments in water environment using SPH method. Modares Mechanical Engineering 2020; 20 (5) :1245-1254
URL: http://mme.modares.ac.ir/article-15-35299-en.html
1- Semnan University
2- Semnan University , khhoseini@semnan.ac.ir
3- Yasouj University
Abstract:   (2672 Views)
Investigating dense flows containing cohesive sediments (turbidity currents) in water environment has been a main interest for researchers in hydraulic and fluid mechanic science. This kind of flow streams at bed surface because of higher density than water and penetrate to overhead water, which causes turbidness.  In the following research, this kind of flow has been modeled using two-phase simulation with smoothed particle hydrodynamics Lagrangian method. A SPHysics2D code has been developed for modeling, in which pressure value is explicitly calculated using equation of state. Also, Herschel-Bulkley-Papanastasiou single relation non-Newtonian viscoplastic model has been used for modeling cohesive sediment phase. After that for investigating the amount of penetration of cohesive sediment mixture in limpid water, advection-diffusion equation was used for developing code. Finally, one and two phase results obtained from the present model were compared to experimental models. The study shows that the present developed model is able to model these flows desirably and could be utilized for studying concentration amount, dense flow penetration and their propagation in water environment.
Full-Text [PDF 1034 kb]   (1517 Downloads)    
Article Type: Original Research | Subject: Computational Fluid Dynamic (CFD)
Received: 2019/07/29 | Accepted: 2019/11/17 | Published: 2020/05/9

1. Huppert HE. Gravity currents: A personal perspective. Journal of Fluid Mechanics. 2006;554:299-322. [Link] [DOI:10.1017/S002211200600930X]
2. Meiburg E, Kneller B. Turbidity currents and their deposits. Annual Review of Fluid Mechanics. 2010;42(1):135-156. [Link] [DOI:10.1146/annurev-fluid-121108-145618]
3. Middleton GV. Sediment deposition from turbidity currents. Annual Review of Earth end Planetary Sciences. 1993;21(1):89-114. [Link] [DOI:10.1146/annurev.ea.21.050193.000513]
4. Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal. 1977;82:1013-1024. [Link] [DOI:10.1086/112164]
5. Monaghan JJ. Simulating free surface flows with SPH. Journal of Computational Physics. 1994;110(2):399-406. [Link] [DOI:10.1006/jcph.1994.1034]
6. Hosseini K, Omidvar P, Kheirkhahan M, Farzin S. Smoothed particle hydrodynamics for the interaction of Newtonian and non-Newtonian fluids using the μ(I) model. Powder Technology. 2019;351:325-337. [Link] [DOI:10.1016/j.powtec.2019.02.045]
7. Fu L, Jin YC. Investigation of non-deformable and deformable landslides using meshfree method. Ocean Engineering. 2015;109:192-206. [Link] [DOI:10.1016/j.oceaneng.2015.08.051]
8. Fu L, Jin YC. Improved multiphase Lagrangian method for simulating sediment transport in dam-break flows. Journal of Hydraulic Engineering. 2016;142(6):04016005. [Link] [DOI:10.1061/(ASCE)HY.1943-7900.0001132]
9. Fourtakas G, Rogers BD. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU). Advances in Water Resources. 2016;92:186-199. [Link] [DOI:10.1016/j.advwatres.2016.04.009]
10. Khanpour M, Zarrati AR, Kolahdoozan M, Shakibaeinia A, Amirshahi SM. Mesh-free SPH modeling of sediment scouring and flushing. Computers & Fluids. 2016;129:67-78. [Link] [DOI:10.1016/j.compfluid.2016.02.005]
11. Farzin S, Hassanzadeh Y, Aalami MT, Fatehi R. Development of two incompressible SPH methods to simulate sediment-laden free surface flows. Modares Mechanical Engineering. 2015;14(12):91-103. [Persian] [Link]
12. Kheirkhahan M, Hosseini K. Comparison of the μ (I) and HBP models for simulating granular media. International Journal of Modern Physics C. 2018;29(07):1850050. [Link] [DOI:10.1142/S012918311850050X]
13. Kheirkhahan M, Hosseini K. Modeling granular flow using μ(i) rheological model in SPH method. Journal of Hydraulics. 2018;12(4):43-55. [Persian] [Link]
14. Omidvar P, Nikeghbali P. Simulation of violent water flows over a movable bed using smoothed particle hydrodynamics. Journal of Marine Science and Technology. 2017;22(2):270-287. [Link] [DOI:10.1007/s00773-016-0409-7]
15. Nikeghbali P, Omidvar P. Application of the sph method to breaking and undular tidal bores on a movable bed. Journal of Waterway, Port, Coastal, and Ocean Engineering. 2017;144(2):04017040. [Link] [DOI:10.1061/(ASCE)WW.1943-5460.0000424]
16. Rostami Hosseinkhani M, Omidvar P, Allahyaribeik S, Torabi Azad M. Simulation of waves on boom and oil plume rising using smoothed particle hydrodynamics. Journal of Applied Fluid Mechanics. 2020;13(1):39-54. [Link] [DOI:10.29252/jafm.13.01.30241]
17. Gomez-Gesteira M, Rogers BD, Crespo AJ, Dalrymple RA, Narayanaswamy M, Dominguez JM. SPHysics-development of a free-surface fluid solver-part 1: Theory and formulations. Computers & Geosciences. 2012;48:289-299. [Link] [DOI:10.1016/j.cageo.2012.02.029]
18. Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. Journal of Computational Physics. 2009;228(22):8380-8393. [Link] [DOI:10.1016/j.jcp.2009.08.009]
19. Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics. 1997;136(1):214-226. [Link] [DOI:10.1006/jcph.1997.5776]
20. Monaghan JJ, Kos A. Solitary waves on a Cretan beach. Journal of Waterway, Port, Coastal, and Ocean Engineering. 1999;125(3):145-155. [Link] [DOI:10.1061/(ASCE)0733-950X(1999)125:3(145)]
21. Rogers BD, Dalrymple RA, Stansby PK. SPH modeling of floating bodies in the surf zone. Conference: Coastal Engineering 2008 - 31st International Conference. World Scientific Publishing: Singapore; 2009. pp. 204-215 [Link] [DOI:10.1142/9789814277426_0017]
22. Zhu H, Kim YD, De Kee D. Non-Newtonian fluids with a yield stress. Journal of Non-Newtonian Fluid Mechanics. 2005;129(3):177-181. [Link] [DOI:10.1016/j.jnnfm.2005.06.001]
23. Fick A. Ueber diffusion. Annalen der Physik. 1855;170(1):59-86. [Link] [DOI:10.1002/andp.18551700105]
24. Komatina D, Jovanovic M. Experimental study of steady and unsteady free surface flows with water-clay mixtures. Journal of Hydraulic Research. 1997;35(5):579-590. [Link] [DOI:10.1080/00221689709498395]
25. Chowdhury MR, Testik FY. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering. 2011;38(1):256-270. [Link] [DOI:10.1016/j.oceaneng.2010.10.020]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.