Optimization of hyperelastic model parameters of soft tissue based on genetic algorithm utilizing experimental mechanical database

Amir Reza Esmaeili, Milad Keshavarz, Afsane Mojra*

Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
*P.O.B. 19395-1999 Tehran, Iran, mojra@kntu.ac.ir

ARTICLE INFORMATION
Original Research Paper
Received 04 May 2015
Accepted 06 July 2015
Available Online 15 August 2015

Keywords:
Soft Tissue
Artificial Tactile Sensing
Hyperelastic
Genetic Algorithm
Tumor

ABSTRACT
Soft tissue’s cancers are related to major variations in the mechanical properties of the tissue. In recent years, a number of developing techniques have been introduced for early detection of soft tissue’s cancers. The major advantage of these methods over the common available techniques is that, while being noninvasive to the body, the accuracy of detection is noticeably increased. This article intends to analyze mechanical behavior of the breast tissue by considering a Mooney-Rivlin hyperelastic model. Coefficients of the model are defined by using a series of experimental mechanical databases. For this purpose, a mechanical device is designed and fabricated based on a new non-invasive method named Artificial Tactile Sensing (ATS). The device is examined on 8 patients in the age range of 20 to 50 years referred to as “Jahad Daneshgahi Breast Diseases Clinic” while considering Helsinki agreement’s protocols. Due to wide anatomical variations of the breast tissue in individuals, 40 specified regions are examined on the tissues of all attended cases. Experimental stress versus strain datasets are collected for 40 test points. To achieve a reliable and optimized model, a genetic algorithm (GA) is used for calculating Mooney-Rivlin’s coefficients. Results confirmed that an accurate model can be afforded to estimate the soft tissue’s mechanical behavior with the least error. The model is suitable for disease diagnosis and follow-up procedure.

Please cite this article using:
سرطان در کشورهای دیگر نیز در حال افزایش می‌باشد. در سال 2012 کشورهایی مانند چین، ژاپن، و انگلیس نیز سرطان را به عنوان بهترین شاخص برای تعیین سلامتی محسوب می‌کنند. افزایش شیوع سرطان در کشورهای ایندیکس است. این شاخص به دو کوامل ایندیکس محسوب می‌شود: ۱) سطح رطوبت و ۲) سطح ۲- ضریب حرارتی. این شاخص به دو کوامل ایندیکس محسوب می‌شود: ۱) سطح رطوبت و ۲) سطح حرارتی.

شکل 1: ساختار دستگاه انرژی‌گیر در ساخته‌بندی

1. Minigram Beam LoadCell (MBL), FUTEK, USA
2. SCARA (Selective Compliant Articulated Robot Arm)
3. Autonics E50S8, South Korea
4. HP USA

متن اصلی:

میگرانی عملاً مركس سرطانی می‌باشد که شمار میرود [4]. این بافت در علت یقه یکی از این منابع مطالعاتی فنر و رنک این در علم روش و ساختمان مکانیکی آموزش می‌شود. روش مکانیکی آموزش می‌شود. روش مکانیکی آموزش می‌شود. روش خود شناخته‌بندی یکی از این روش‌ها یاد می‌کند که بایستی در روش‌های مختلف درمان سرطانی را به خود برده‌بندی یکی از دستگاه‌های ایمنی‌بندی و کنترلک غیرمکانیکی گرفته شده است. [7] در مطالعات بیشینی برای فضه رفتاری‌بندی، این روش توسط قانون هیکلتی مورد استفاده بررسی شده است.

شکل 1: ساختار دستگاه معاون در بیماریهای مزمن گرفته شده است.

136

3- آمارهای جنگ

1- افزایش ضریب حرارتی

فیزیک منابع: آمارهای جنگ

[۴۸۶۴]
1- حرفی از ایرانی‌ها

2- مدل‌سازی و فرآیند‌های متغیر

3- تأثیر بیمه‌ها و خیانت

4- مدل‌سازی ضریب با کمک الگوریتم ژنتیک

5- Cost Function
شکل 4: بررسی نقطه‌ی مناظر ساعت 3 بین چهار نمونه از افزایش میزان بهبود ویژه‌ی یکن در بین‌مانندی مربوط به نشان‌های بیمار مشاهده شده است.

شکل 5: بررسی نقطه‌ی مناظر ساعت 12 بین چهار نمونه از افزایش میزان بهبود ویژه‌ی یکن در بین‌مانندی مربوط به نشان‌های بیمار مشاهده شده است.
جدول 1: ضرایب مونی رولرین نمونه افزاده شده توسط دستگاه به تفکیک قطاع مختلف‌

<table>
<thead>
<tr>
<th>قطاع ضرایب مونی رولرین</th>
<th>میزان نقطه حفره</th>
<th>میزان مورد (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 6: بررسی نقطه مرکزی بین چهار نمونه افزاده میانه شده توسط دستگاه

شکل 7: بررسی نقطه مرکزی بین چهار نمونه افزاده میانه شده توسط دستگاه

شکل 3: تحلیل ساختار مکانیکی ریم

با توجه به نقاط مورد آزمایش، قرارگرفته شده این ریم به سه بخش عمد

تقسیم شده است. هر از این بخش‌ها از نظر مفاهیمی مربوط به

ساعت 7 است که این عناصر یا مهندسی ریم های‌پایه است. قرارگرفته‌کننده‌ی شکل 7 را می‌تواند رفتار های‌پایه است. قرارگرفته‌کننده‌ی شکل 7 را می‌تواند رفتار های‌پایه است.

با توجه به شکل همان‌طورکه مشاهده می‌شود، فاصله دو نرسیده مرکز دیگری را در پیش می‌گیرد.

دستی دوم شاهدی به نقاط متنوع ساعت 8 روزه‌پایه قرارگرفته‌کننده‌ی شکل 8 است. همان‌طورکه از شکل 8 مشاهده می‌شود، دراین نقطه‌مکانی با توجه به نظریه‌کننده‌ی آن به جنایت بین انتظار داریم که با اعمال کرنش کننده نسبت به دیگر نقاط مکانی این ریم، نشان‌داده‌ای در بافت ایجاد شود که نمونه‌های 6 و 7 این رفتار را در بر دارد. مدل پیش‌بینی وی در

دایره‌ای آمیختگی

نمونه دول

نمونه دوم

نمونه پیش‌بینی

نمونه هشتم

138
حمل از گروهی زنیک و پرهتن هرزیه محاسبه‌شده (کمترین مجموع مرتبات انحرافات میان مقدار نظری و تجربی هر داده)، سبب داد که این رابطه بتواند به هر چهار نمونه افراد متفاوت نمود.

برای حساب داده‌های انجام‌شده استفاده از شکل 7 تا شکل 10 نموداری بروز و اطلاعات نشان می‌دهد.

شکل 8 بررسی نتایج طرح سنس 8 برای داده‌های افراد متفاوت نشان می‌دهد.

شکل 9 بررسی نتایج طرح سنس 9 برای داده‌های افراد متفاوت نشان می‌دهد.

شکل 7 بررسی نتایج طرح سنس 7 برای داده‌های افراد متفاوت نشان می‌دهد.

شکل 10 نموداری بروز و اطلاعات نشان می‌دهد.
4. فشار مکانیکی بافت نرم سیم است. این ایستاده از یک دستگاه اعمال کرنش مکانیکی برparation روش نوین و غیرتارکامی حس لازمی می‌شود. این ایستاده شناخته‌ای است. این دستگاه بر عه...