Volume 20, Issue 8 (August 2020)                   Modares Mechanical Engineering 2020, 20(8): 2061-2073 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pazhouheshgar A, Moghanian A, Sadough Vanini S. The Extended Finite Element Method Numerical and Experimental Analysis of Mechanical Behavior of Polysulfone/58s Bioactive Glass Synthesized through Solvent Casting Method. Modares Mechanical Engineering 2020; 20 (8) :2061-2073
URL: http://mme.modares.ac.ir/article-15-37532-en.html
1- Mechanical Engineering Department, Faculty of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2- Department of Materials Engineering, Engineering Faculty, Imam Khomeini International University, Qazvin, Iran , moghanian@eng.ikiu.ac.ir
Abstract:   (2317 Views)
The composites derived from the bioactive glasses, such as BG/polysulfone, have better mechanical properties than pure materials and their characteristics are closer to human bone. In this study, the unknown fracture behavior of 58s BG/PSF composite has been investigated. The extended finite element method (XFEM) was used, in order to model the fracture behavior of 58s BG/PSF composite with greater accuracy. The XFEM doesn’t require remeshing at each step and achieves the precise approximation of singularities by incorporating discontinuity behavior into the elements using the enrichment functions. The aim of using the XFEM was to obtain stress intensity factors, displacements, stress and strain around the crack tip, fracture toughness as well as strain energy release rate. Moreover, the 58s BG/PSF composite with 30% bioactive glass particles was synthesized using solvent casting method and the bending failure test was performed according to the relevant standard. Also, to demonstrate the quality of the interface between the glass particles and polysulfone, SEM investigation was performed on the fracture surface. The obtained fracture toughness was in the range of 1.4 to 1.6 , and the strain energy release rate was in the range of 1600 to 1900 J.m-2, which was comparable to the same properties of natural human bone. Besides, the stress intensity factors and strain energy release rates were calculated by coding in MATLAB and modeling in ABAQUS, and the numerical results were validated with the analytical and experimental data and it was revealed that the numerical results were in great coordinance with the analytical and experimental results.
Full-Text [PDF 1553 kb]   (1090 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2019/10/21 | Accepted: 2020/05/27 | Published: 2020/08/15

References
1. Niinimaki T, Junila J, Jalovaara P. A proximal fixed anatomic femoral stem reduces stress shielding. International orthopaedics. 2001;25(2):85-88. [Link] [DOI:10.1007/s002640100241]
2. Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. Journal of Biomedical Materials Research. 1998;39(1):161-170. https://doi.org/10.1002/(SICI)1097-4636(199801)39:1<161::AID-JBM18>3.0.CO;2-I [Link] [DOI:10.1002/(SICI)1097-4636(199801)39:13.0.CO;2-I]
3. Hench LL. The story of bioglass. Journal of Materials Science Materials in Medicine. 2006;17(11):967-978. [Link] [DOI:10.1007/s10856-006-0432-z]
4. Moghanian A, Firoozi S, Tahriri M. Synthesis and in vitro studies of sol-gel derived lithium substituted 58S bioactive glass. Ceramics International. 2017;43(15):12835-12843. [Link] [DOI:10.1016/j.ceramint.2017.06.174]
5. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Journal of Biomedical Materials Research Part A. 2003;64(3):465-474. [Link] [DOI:10.1002/jbm.a.10399]
6. - Ravarian R, Moztarzadeh F, Solati Hashjin M, Rabiee SM, Khoshakhlagh P, Tahriri M. Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceramics International. 2010;36(1):291-297. [Link] [DOI:10.1016/j.ceramint.2009.09.016]
7. Vichery C, Nedelec JM. Bioactive glass nanoparticles: From synthesis to materials design for biomedical applications. Materials (Basel). 2016;9(4):288. [Link] [DOI:10.3390/ma9040288]
8. Moghanian A, Firoozi S, Tahriri M, Sedghi A. A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Materials Science and Engineering: C. 2018;91:349-360. [Link] [DOI:10.1016/j.msec.2018.05.058]
9. Thompson ID, Hench LL. Mechanical properties of bioactive glasses, glass-ceramics and composites. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 1998;212(2):127-136. [Link] [DOI:10.1243/0954411981533908]
10. Ashuri M, Moztarzadeh F, Nezafati N, Ansari Hamedani A, Tahriri MR. Synthesis and evaluation of mechanical properties of hydroxyapatite/sol-gel derived bioactive glass particles composites. Journal of Advanced Materials In Engineering. 2012;31(1):57-72. [Persian] [Link]
11. Malysheva AY, Beletskii BI, Vlasova EB. Structure and properties of composite materials for medical application. Glass and Ceramics. 2001;58(1):66-69. [Link] [DOI:10.1023/A:1010953632695]
12. Bertolla L, Chlup Z, Stratil L, Boccaccini AR, Dlouhý I. Effect of hybrid polymer coating of Bioglass® foams on mechanical response during tensile loading. Advances in Applied Ceramics. 2015;114:63-69. [Link] [DOI:10.1179/1743676115Y.0000000041]
13. Zhang K, Ma Y, Francis LF. Porous polymer/bioactive glass composites for soft‐to‐hard tissue interfaces. Journal of Biomedical Materials Research. 2002;61(4):551-563. [Link] [DOI:10.1002/jbm.10227]
14. Islam MT, Felfel RM, Abou Neel EA, Grant DM, Ahmed I, Hossain KMZ. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. Journal of Tissue Engineering. 2017;8: 2041731417719170. [Link] [DOI:10.1177/2041731417719170]
15. Stanciu G, Sandulescu I, Savu B, Stanciu S, Paraskevopoulos K, Chatzistavrou X, et al. Investigation of the hydroxyapatite growth on bioactive glass surface. Journal of Biomedical & Pharmaceutical Engineering. 2007;1(1):34-39. [Link]
16. Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials. 1998;19(24):2357-2366. [Link] [DOI:10.1016/S0142-9612(98)00154-9]
17. Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composite Science and Technology. 2003;63(3-4):421-425. [Link] [DOI:10.1016/S0266-3538(02)00230-0]
18. Khang G, Lee HB, Park JB. Biocompatibility of polysulfone I. Surface modifications and characterizations. Bio-Medical Materials and Engineering. 1995;5(4):245-258. [Link] [DOI:10.3233/BME-1995-5405]
19. Teotia R, Verma SK, Kalita D, Singh AK, Dahe G, Bellare J. Porosity and compatibility of novel polysulfone-/vitamin E-TPGS-grafted composite membrane. Journal of Materials Science. 2017;52(20):12513-12523. [Link] [DOI:10.1007/s10853-017-1351-8]
20. Wang M, Bonfield W. Chemically coupled hydroxyapatite-polyethylene composites: Structure and properties. Biomaterials. 2001;22(11):1311-1320. [Link] [DOI:10.1016/S0142-9612(00)00283-0]
21. Liao CJ, Chen C-F, Chen J-H, Chiang S-F, Lin Y-J, Chang K-Y. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. Journal of Biomedical Materials Research. 2001;59(4):676-681. [Link] [DOI:10.1002/jbm.10030]
22. Oréfice R, Clark A, West J, Brennan A, Hench L. Processing, properties, and in vitro bioactivity of polysulfone‐bioactive glass composites. Journal of Biomedical Materials Research. 2007;80(3):565-580. [Link] [DOI:10.1002/jbm.a.30948]
23. Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Scientific Reports. 2016;6:19468. [Link] [DOI:10.1038/srep19468]
24. Liu X, Rahaman MN, Hilmas GE, Bal BS. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair. Acta Biomaterialia. 2013;9(6):7025-7034. [Link] [DOI:10.1016/j.actbio.2013.02.026]
25. Broek D. Elementary engineering fracture mechanics. Berlin: Springer Science & Business Media; 2012. [Link]
26. Turner CE. Fracture toughness and specific fracture energy: A re-analysis of results. Materials Science and Engineering. 1973;11(5):275-282. [Link] [DOI:10.1016/0025-5416(73)90092-X]
27. Meyers MA, Kumar Chawla K. Mechanical behavior of materials. Cambridge: Cambridge University Press; 2008. [Link] [DOI:10.1017/CBO9780511810947]
28. Hashemi SH, Kymyabakhsh M. Experimental and numerical determination of fracture toughness in gas pipeline steel of grade API X65. Amirkabir Journal of Mechanical Engineering. 2013;45(2):1-9. [Persian] [Link]
29. ASTM D5045-14. Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials [Internet]. West Conshohocken: ASTM International; 2014 [Unknown Cited]. Available from: https://www.astm.org/Standards/D5045.htm [Link]
30. Rajabi H. Experimental and numerical investigations of crack propagation in dragonfly wing veins. Amirkabir Journal of Mechanical Engineering. 2016;48(2):179-186. [Persian] [Link]
31. Motamedi D, Mohammadi S. Fracture analysis of composites by time independent moving-crack orthotropic XFEM. International Journal of Mechanical Sciences. 2012;54(1):20-37. [Link] [DOI:10.1016/j.ijmecsci.2011.09.004]
32. Feulvarch E, Fontaine M, Bergheau J-M. XFEM investigation of a crack path in residual stresses resulting from quenching. Finite Elements in Analysis and Design. 2013;75:62-70. [Link] [DOI:10.1016/j.finel.2013.07.005]
33. Ghaffari D, Rash Ahmadi S, Shabani F. XFEM simulation of a quenched cracked glass plate with moving convective boundaries. Comptes Rendus Mécanique. 2016;344(2):78-94. [Link] [DOI:10.1016/j.crme.2015.09.007]
34. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. 1999;45(5):601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S [Link] [DOI:10.1002/(SICI)1097-0207(19990620)45:53.0.CO;2-S]
35. Pathak H, Singh A, Singh IV. Numerical simulation of bi-material interfacial cracks using EFGM and XFEM. International Journal of Mechanics and Materials in Design. 2012;8(1):9-36. [Link] [DOI:10.1007/s10999-011-9173-3]
36. Entezari A, Roohani Esfahani I, Zhang Z, Zreiqat H, Dunstan CR, Li Q. Fracture behaviors of ceramic tissue scaffolds for load bearing applications. Scientific Reports. 2016;6:28816. [Link] [DOI:10.1038/srep28816]
37. Khoei AR. Extended finite element method: Theory and applications. Hoboken: Wiley; 2015. [Link] [DOI:10.1002/9781118869673]
38. Rice JR. A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanics. 1968;35(2):379-386. [Link] [DOI:10.1115/1.3601206]
39. Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci U S A. 1996;93(4):1591-1595. [Link] [DOI:10.1073/pnas.93.4.1591]
40. Fett T. Stress intensity factors and weight functions for special crack problems. 1998 January. Report Number: FZKA-6025. [Link]
41. Wolfram U, Schwiedrzik J. Post-yield and failure properties of cortical bone. Bonekey Reports. 2016;5:829. [Link] [DOI:10.1038/bonekey.2016.60]
42. Gales RDR, Mills NJ. The plane starin fracture of polysulfone. Engineering Fracture Mechanics. 1974;6(1):93-98. [Link] [DOI:10.1016/0013-7944(74)90049-6]
43. Krishnan V, Lakshmi T. Bioglass: A novel biocompatible innovation. Journal of Advanced Pharmaceutical Technology and Research. 2013;4(2):78-83. [Link] [DOI:10.4103/2231-4040.111523]
44. Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants: A review. Clinical Cases in Mineral and Bone Metabolism. 2013;10(1):34-40. [Link] [DOI:10.11138/ccmbm/2013.10.1.034]
45. Roland L, Backhaus S, Grau M, Matena J, Teske M, Beyerbach M, et al. Evaluation of functionalized porous titanium implants for enhancing angiogenesis in vitro. materials. Materials. 2016;9(4):304. [Link] [DOI:10.3390/ma9040304]
46. Bellucci D, Sola A, Anesi A, Salvatori R, Chiarini L, Cannillo V. Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation. Materials Science and Engineering: C. 2015;51:196-205. [Link] [DOI:10.1016/j.msec.2015.02.041]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.