Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2213-2221 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdi Behnagh R, Abdollahi H, Rajabi R. Production of Bulk Aluminum Parts from Machining Chips by Shear Compaction Processing. Modares Mechanical Engineering 2020; 20 (9) :2213-2221
URL: http://mme.modares.ac.ir/article-15-37757-en.html
1- Manufacturing Department, Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
2- Manufacturing Department, Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran , h.abdollahi@uut.ac.ir
Abstract:   (2269 Views)
In the current study, shear compaction processing was used for the recycling of aluminum machining chips and direct converting of them to bulk parts. In this processing, machining chips are first loaded in a cylindrical chamber, then a rotating tool with a defined rotational speed and aligned axis with the chamber is placed on the chips, in the following, the temperature inside the chamber increases due to the friction. Then, the process continues until all chips are transformed into a bulk part. After producing the samples, properties such as density, porosity, microstructure, hardness, and wear of the recycled parts were examined. The results showed that there is a possibility of transforming aluminum chips into a completely bulk part without porosity, with a density of about 2.67g/cm3 and hardness of more than half of the base metal via shear compaction process. The amount of heat during the process leads to the consolidation of the chips and nucleation of new grains with dynamic recrystallization. Finally, a review of the total results and properties of the recycled samples showed that they could be used as a industrial part directly or after a secondary process.
Full-Text [PDF 751 kb]   (2055 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2020/01/6 | Accepted: 2020/06/15 | Published: 2020/09/20

References
1. Zahmatkesh B, Enayati, MH, Karimzadeh F. Tribological and microstructural evaluation of friction stir processed Al2024 alloy. Materials & Design. 2010;31(10):4891-4896. [Link] [DOI:10.1016/j.matdes.2010.04.054]
2. Puga H, Barbosa J, Soares D, Silva F, Ribeiro S. Recycling of aluminium swarf by direct incorporation in aluminium melts. Journal of Materials Processing Technology. 2009;209(11):5195-5203. [Link] [DOI:10.1016/j.jmatprotec.2009.03.007]
3. Gronostajski J, Marciniak H, Matuszak A. New methods of aluminium and aluminium-alloy chips recycling. Journal of Materials Processing Technology. 2000;106(1-3):34-39. [Link] [DOI:10.1016/S0924-0136(00)00634-8]
4. Samuel M. A new technique for recycling aluminium scrap. Journal of Materials Processing Technology. 2003;135(1):117-124. [Link] [DOI:10.1016/S0924-0136(02)01133-0]
5. Fogagnolo JB, Ruiz-Navas EM, Simón MA, Martinez MA. Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. Journal of Materials Processing Technology. 2003;143-144:792-795. [Link] [DOI:10.1016/S0924-0136(03)00380-7]
6. Mabuchi M, Kubota K, Higashi K. New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars. Materials Transactions, JIM. 1995;36(10):1249-1254. [Link] [DOI:10.2320/matertrans1989.36.1249]
7. Nakanishi M, Mabuchi M, Kubota K, Higashi K. Relationship between extrusion ratio and mechanical properties of extruded machined-chips of AZ91 magnesium alloy. Journal of the Japan Society of Powder and Powder Metallurgy. 1995;42(3):373-377. [Link] [DOI:10.2497/jjspm.42.373]
8. Chino Y, Furuta T, Hakamada M, Mabuchi M. Fatigue behavior of AZ31 magnesium alloy produced by solid-state recycling. Journal of Materials Science. 2006;41:3229-3232. [Link] [DOI:10.1007/s10853-005-5556-x]
9. Hu M, Ji Z, Chen X, Zhang Z. Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling. Materials Characterization. 2008;59(4):385-389. [Link] [DOI:10.1016/j.matchar.2007.02.002]
10. Tekkaya AE, Schikorra M, Becker D, Biermann D, Hammer N, Pantke K. Hot profile extrusion of AA-6060 aluminum chips. Journal of Materials Processing Technology. 2009;209(7):3343-3350. [Link] [DOI:10.1016/j.jmatprotec.2008.07.047]
11. Lazzaro G, Vittori S. Metal and energy saving by direct and continuous extrusion of aluminium scraps. Proceedings of the 121st TMS Annual Meeting, Unknown Date of Meeting, San Diego, CA. Unknown Publisher; 1992. [Link]
12. Sugiyama S, Yanagimoto J. Solidification and forming technology of minute scrap metal by semisolid process. Journal of Solid Mechanics and Materials Engineering. 2009;3(2):227-235. [Link] [DOI:10.1299/jmmp.3.227]
13. Chiba R, Nakamura T, Kuroda M. Solid-state recycling of aluminium alloy swarf through cold profile extrusion and cold rolling. Journal of Materials Processing Technology. 2011;211(11):1878-1887. [Link] [DOI:10.1016/j.jmatprotec.2011.06.010]
14. Abdi Behnagh R, Shen N, Ansari MA, Narvan M, Besharati Givi MK, Ding H. Experimental Analysis and microstructure modeling of friction stir extrusion of magnesium chips. Journal of Manufacturing Science and Engineering. 2016;138: 041008. [Link] [DOI:10.1115/1.4031281]
15. Buffa G, Baffari D, Ingarao G, Fratini L. Uncovering technological and environmental potentials of aluminum alloy scraps recycling through friction stir consolidation. International Journal of Precision Engineering and Manufacturing-Green Technology. 2020, Jan. [Link] [DOI:10.1007/s40684-019-00159-5]
16. Narvan M, Abdi Behnagh R, Shen N, Besharati Givi MK, Ding H. Shear compaction processing of SiC nanoparticles reinforced magnesium composites directly from magnesium chips. Journal of Manufacturing Processes. 2016;22:39-48. [Link] [DOI:10.1016/j.jmapro.2016.01.010]
17. Li X, Baffari D, Reynolds AP. Friction Stir consolidation of aluminum machining chips. The International Journal of Advanced Manufacturing Technology. 2018;94:2031-2042. [Link] [DOI:10.1007/s00170-017-1016-4]
18. Abdi Behnagh R, Fathi F, Yeganeh M, Paydar M, Agha Mohammad M, Liao Y. Production of seamless tube from aluminum machining chips via double-step friction stir consolidation. The International Journal of Advanced Manufacturing Technology. 2019;104:4769-4777. [Link] [DOI:10.1007/s00170-019-04326-5]
19. Li X, Kassner ME, Bergsma S C. Recrystallization behavior of rolled ingots of 6061 and 6069 aluminum and alloys. Journal of Materials Engineering and Performance. 2000;9:416-423. [Link] [DOI:10.1361/105994900770345818]
20. Murr LE, Liu G, McClure JC. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. Journal of Materials Science. 1998;33:1243-1251. [Link] [DOI:10.1023/A:1004385928163]
21. Akbari M, Abdi Behnagh R, Dadvand A. Effect of materials position on friction stir lap welding of Al to Cu. Science and Technology of Welding and Joining. 2012;17(7):581-588. [Link] [DOI:10.1179/1362171812Y.0000000049]
22. Abdi Behnagh R, Samanta A, Agha Mohammad Pour M, Esmailzadeh P, Ding H. Predicting microstructure evolution for friction stir extrusion using a cellular automaton method. Modelling and Simulation in Materials Science and Engineering. 2019;27(3):035006. [Link] [DOI:10.1088/1361-651X/ab044b]
23. Krishnan KN. On the formation of onion rings in friction stir welds. Materials Science and Engineering: A. 2002;327(2):246-251. [Link] [DOI:10.1016/S0921-5093(01)01474-5]
24. Bahemmat P, Haghpanahi M, Besharati MK Ahsanizadeh S, Rezaei H. Study on mechanical, micro-, and macrostructural characteristics of dissimilar friction stir welding of AA6061-T6 and AA7075-T6. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2010;224(12):1854-1864. [Link] [DOI:10.1243/09544054JEM1959]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.