The Effect of Macro Fiber Reinforcements on Mechanical Behavior of Single Lap Adhesively Bonded Joints in two Different Orientations

Majid Reza Ayatollahi¹, Ali Nemati Giv, Seyed Mohamad Javad Razavi

Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract
Adding particles and fibers to the adhesive layer is a method suggested to improve the stress distribution and to increase the strength and toughness of adhesive joints. In this paper, the effects of adding the metal fibers and also the reduction of fiber horizontal distance on distribution of peel stress and shear stress were also investigated in joint width, which was indicative of the significant effect of the metal fibers in the transverse configuration. Meanwhile, reduction of the horizontal distance between the metal fibers in the transverse direction first degrades the peel stress and then improves it. Despite the trend observed for the peel stress with the transverse direction, the distribution of the shear stress with reduction of the horizontal distance between the metal fibers becomes more uniform and the maximum values of shear stress regularly decreases in the joint length due to considerable load sharing of the metal fibers in the adhesive layer. In addition to the analyses carried out on the distribution of stress in the joint lengths, the distribution of peel stress and shear stress were also investigated in joint width, which was indicative of the significant effect of the metal fibers in the transverse configuration.
3- Solid element
Tables 1

<table>
<thead>
<tr>
<th>همخوانی</th>
<th>چسبانی</th>
<th>لایه</th>
<th>شرایط جلوگیری از آشفتگی (GPa)</th>
<th>ضریب پویایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل پالنگ</td>
<td>71.7</td>
<td>5.54</td>
<td>71.7</td>
<td>0.33</td>
</tr>
<tr>
<td>ضریب پویایی</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پویایی</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1 Single lap joint geometry and embedded metallic fibers in the adhesive layer

Fig.2 Finite element model and boundary condition of single lap joint reinforced by metal fibers with the longitudinal direction

Fig.3 Peel stress distribution along the joint length in the various horizontal distance at the longitudinal direction

Fig.4 Peel stress distribution along the joint length in the various horizontal distance at the longitudinal direction

Table 1

<table>
<thead>
<tr>
<th>همخوانی</th>
<th>چسبانی</th>
<th>لایه</th>
<th>شرایط جلوگیری از آشفتگی (GPa)</th>
<th>ضریب پویایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل پالنگ</td>
<td>71.7</td>
<td>5.54</td>
<td>71.7</td>
<td>0.33</td>
</tr>
<tr>
<td>ضریب پویایی</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پویایی</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.1 Single lap joint geometry and embedded metallic fibers in the adhesive layer

Fig.2 Finite element model and boundary condition of single lap joint reinforced by metal fibers with the longitudinal direction

Fig.3 Peel stress distribution along the joint length in the various horizontal distance at the longitudinal direction

Fig.4 Peel stress distribution along the joint length in the various horizontal distance at the longitudinal direction
شکل ۵ توزیع نیروی پلی در جهت‌گیری عرضی

Fig.5 Peel stress distribution in the adhesive layer with the lateral direction
Fig. 6 Shear stress distribution in the adhesive layer with the lateral direction.
4- جمع‌نمایی و توجه‌گری

کاهش مقادیر پیشنهاد شده آن نسبت به پوشک‌های مشابه است. این نتایج نشان می‌دهد که با افزایش فاصله افقی پوشک‌های فلزی برای برخی محصولات، این نتایج برای برندهایی که در راستای عرض اصلاح می‌شود، این برای هرگونه است که در جهت‌گیری طولی، نتایج توزیع پوشک‌های مقادیر نشان می‌دهد اصلاح غیر اکارکتر می‌شود.

[گرافیک 3D پول استرس در لایه پوشک با距ینی افقی ابتدایی مابین ماهیتی و آلوده‌های فلزی با آنتی‌زایش و لازم‌های طولانی و عرضی پوشک‌های تعریف شده است. در جهت‌گیری طولی، توزیع نشانه‌های پوشک‌هایی برای بخش‌های غیر مشابه نشان می‌دهد.]

Fig. 7 The comparison of 3D peel stress distribution in the adhesive layer at the minimum horizontal distance between the metal fibers ($a = 0.3$) with unreinforced adhesive a unreinforced adhesive b) adhesive reinforced by metal fibers with longitudinal direction c) adhesive reinforced by metal fibers with lateral direction

شکل 7 مقایسه پول استرس به مدت نشانه‌های پوشک‌هایی در لایه ابتدایی مابین ماهیتی و آلوده‌های فلزی ($a = 0.3$) با جدید پوشک‌شما، نشان می‌دهد که پوشک‌های طولانی و عرضی در جهت‌گیری طولی نشانه‌های پوشک‌هایی برای بخش‌های غیر مشابه نشان می‌دهد.
Fig. 8 The comparison of 3D shear stress distribution in the adhesive layer at the minimum horizontal distance between the metal fibers \((a' = 0.3) \) with unreinforced adhesive a) unreinforced adhesive b) reinforced by metal fibers with longitudinal direction c) adhesive reinforced by metal fibers with lateral direction

The high load sharing of the metallic fibers reducing the shear stress level of the adhesive layer

The work effect of the lateral direction on improving shear stress distribution along the joint length

The improvement of the shear stress distribution along the joint width reinforced by metallic fibers with the lateral direction.
polymide composite films, adhesion and adhesives, Vol. 27, No. 4, pp. 306-

Experimental study of the influence of adhesive reinforcement in lap joints
for composite structures subjected to mechanical loads, Adhesion and

the tensile shear strength of adhesively bonded single lap joints, adhesion

[6] T. Sadowski, M. Kneč, P. Golewski, Experimental investigations and
numerical modelling of steel adhesive joints reinforced by rivets, Adhesion

with nano-TiO2 reinforced structural acrylic adhesive, Adhesion, in press,
2014.

reinforced epoxy adhesive bonded joints made with composite materials,

[10] R. Kilik, R. Davies, Mechanical properties of adhesive filled with metal

of adhesively bonded stainless steel joints with aramid fibers at cryogenic

structural adhesives via nano- and micro-phase inclusions, Adhesion, Vol. 79,

strength and toughness of polyvinyl acetate glue on addition of small
quantities of graphene, ACS Applied Materials & Interfaces, Vol. 5, No. 4,

with degradation in rubber-toughened epoxy adhesive joints: Application to
open-faced specimens, Adhesion and Adhesives, Vol. 31, No. 6, pp. 530-540,
2011.

[16] H. Khoramishad, S.M.J Razavi, Metallic fiber-reinforced adhesively bonded
thermoplastic polyimides. Part-I: Multi-walled carbon nano-tubes (MWNT),
Experimental study of the influence of adhesive reinforcement in lap joints
for composite structures subjected to mechanical loads, Adhesion and
the tensile shear strength of adhesively bonded single lap joints, adhesion
[6] T. Sadowski, M. Kneč, P. Golewski, Experimental investigations and
numerical modelling of steel adhesive joints reinforced by rivets, Adhesion
with nano-TiO2 reinforced structural acrylic adhesive, Adhesion, in press,
2014.
reinforced epoxy adhesive bonded joints made with composite materials,
[10] R. Kilik, R. Davies, Mechanical properties of adhesive filled with metal
of adhesively bonded stainless steel joints with aramid fibers at cryogenic
structural adhesives via nano- and micro-phase inclusions, Adhesion, Vol. 79,
strength and toughness of polyvinyl acetate glue on addition of small
quantities of graphene, ACS Applied Materials & Interfaces, Vol. 5, No. 4,
with degradation in rubber-toughened epoxy adhesive joints: Application to
open-faced specimens, Adhesion and Adhesives, Vol. 31, No. 6, pp. 530-540,
2011.