Young’s modulus estimation of fullerene nanostructure by using molecular mechanics and finite element method

Ali Nayebi, Esmeaal Ghavanloo, Nastaran Hosseini

School of Mechanical Engineering, Shiraz University, Shiraz, Iran
P.O.B. 71963-16548, Shiraz, Iran, nayebi@shirazu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 23 January 2016
Accepted 24 February 2016
Available Online 26 March 2016

Keywords:
Young’s modulus
Molecular mechanics
Fullerene nanostructure

ABSTRACT

In this paper, a three-dimensional finite element model is proposed for estimating Young’s modulus of fullerene nanostructures. The model is based on the assumption that the fullerenes, when subjected to loading, behave like space-frame structures. The bonds between carbon atoms are considered as connecting load-carrying members like beams under axial, bending and torsion loadings, while the carbon atoms are considered as joints of the members. To create the finite element models, nodes are placed at the locations of carbon atoms and the bonds between them are modeled using three-dimensional elastic beam elements. The elastic modulus of beam elements is determined by using a linkage between molecular mechanics and continuum mechanics. In order to evaluate the Young’s modulus, the spherical shell theory is also utilized. Compression loading on the fullerene is considered and the load – displacement variation is obtained. The effect of diameter on the elastic modulus of fullerene nanostructures has been studied and it is observed that by increasing the radius of fullerenes, their elastic modulus decreases. After studying the properties of perfect fullerenes, the Young’s modulus of different defective fullerenes is also determined.
2- مولکول مکانیکی

در روش مکانیک بازخورد یا روش مکانیکی که بر اساس یک شکل قابل فضایی در نظر می‌گیرد، مولکول در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(1)

که در این

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(2)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(3)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(4)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(5)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(6)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(7)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(8)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(9)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(10)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(11)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(12)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(13)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(14)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(15)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(16)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(17)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.

(18)

از ریز مولکول به وسیله مولکول‌ها که در زمینه‌ای است که تغییرات شکل مولکول توانایی بین بیشتر و کمتر شکل‌ها را داشته باشد.
مشخص گردی

اثرات کاری از طریق پیوستگی به هم مرتبط بایشند و نگیرش شکل، تنها برای مشاهده پیوستگی است. حدشت ساده‌سازی از این فرض استفاده می‌شود که پیوستگی استوانه است. در موارد این مستحکم یا برای مؤثر نتیجه، باید نمونه‌بندی کرده باشد.

$E = \frac{k_f L}{4\pi k_0}$

(7)

$G = \frac{k_f^2 L}{8\pi k_0}$

(8)

از یک لامبدا که مقدار k_0 و k_f از مکانیک مولکولی به شرح زیر

$\rho_r = 938 \text{ kcal.mol}^{-1}\text{Å}^{-2}$

$\rho_f = 126 \text{ kcal.mol}^{-1}\text{rad}^{-2}$

دست می‌آید.

با قرار دادن طول پیوستگی d، در فولون: 3-7، 5-10، نامناسبی که مقداران مناسب خواهد داشت این مقدار در جدول 1 ارائه شد.

3- عبور ساختاری نانوپارسونه فولون

همان‌گونه که چش از یک باین‌گردید، ایجاد عبور ساختاری ممکن است در انواع فولون‌های مختلف ایجاد گردد. در این بخش می‌خواهیم عبور خواهیم یاد. برای مثال

\[U_p = \int_0^L \frac{p}{2} \frac{d^2 u}{dL^2} \frac{dL}{2} \]

(3)

\[U_M = \int_0^L \frac{M^2}{2H} \frac{dL}{2} \frac{d\theta}{2} \]

(4)

\[U_T = \int_0^L \frac{T^2}{2} \frac{dL}{2} \frac{G}{L} \frac{d\phi}{2} \]

(5)

با دقت ارزیابی مقدار U_p، U_M و U_T و U_p، U_M و U_T به یک ارزیابی ناشی از این فرمول نظری است. به عنوان یک درستی ناشی از U_p و U_M و U_T هر دو بیشتر به مرحله دانستند. با مقایسه مدل‌های پیشنهادی، رابطه میان پارامترهای مکانیک مولکولی با مکانیک مولکولی بیشتر می‌آید.

\[\frac{EA}{L} = k_r \]

(6)

\[\frac{EL}{L} = k_{\theta} \]

\[\frac{GJ}{L} = k_\varphi \]

(7)

نمایشک گردیده که اشاره‌شده گونه برای طرف سطح سطح دایره و E, d, r برای مجهول r, این مقدار به صورت مقدار E (7) حامل می‌شود.

\[
\begin{aligned}
\text{شکل 3 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[\text{Fig. 2 Molecular Mechanics modeling of atomic links.} \]

\[
\begin{aligned}
\text{شکل 2 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 1 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 4 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 5 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 6 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 7 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]

\[
\begin{aligned}
\text{شکل 8 مدل‌سازی مکانیک مولکولی با توجه به مصرف این نتیجة، باید نمونه‌بندی کرده باشد.}
\end{aligned}
\]
Fig. 3 Schematic representation of defectives Fullerens a) 5-5 bond, b) Stone-Wales, c) generalized Stone-Wales [17].

Table 1 Section characteristics and material properties of the beam element.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>1.466 Å</td>
</tr>
<tr>
<td>Thickness</td>
<td>1.6879 Å</td>
</tr>
<tr>
<td>Density</td>
<td>1.421 Å²</td>
</tr>
<tr>
<td>Young's modulus</td>
<td>0.453456 Å³</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.22682 Å²</td>
</tr>
<tr>
<td>Elastic modulus</td>
<td>5.488 × 10⁸ N/mm²</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>8.711 × 10⁸ N/mm²</td>
</tr>
</tbody>
</table>

Fig. 4 Schematic representation of defectives Fullerens a) 5-6 and 6-6 bonds, b) 5-6 bond, c) 4-9 bond, d) 5-5-7 defect and e) 4-4-8(6) defect [19].
بحثی در مورد اثربخشی‌های نسبت به حالتی که آن‌ها در سطح سیاست‌های حرکتی و رفتاری می‌باشند.

cالکول

\[k = \frac{1}{\Delta U} \]
Table 2 Radius, stiffness constant and elastic modulus of Fullerenes.

<table>
<thead>
<tr>
<th></th>
<th>E (TPa)</th>
<th>k (N/m)</th>
<th>ą (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C60</td>
<td>1.98039</td>
<td>272.236</td>
<td>3.5</td>
</tr>
<tr>
<td>C60</td>
<td>1.86514</td>
<td>190.889</td>
<td>4.08</td>
</tr>
<tr>
<td>C70</td>
<td>1.62755</td>
<td>110.506</td>
<td>6.15</td>
</tr>
<tr>
<td>C80</td>
<td>1.57889</td>
<td>93.2528</td>
<td>7.07</td>
</tr>
<tr>
<td>C180</td>
<td>1.56882</td>
<td>89.2495</td>
<td>7.34</td>
</tr>
<tr>
<td>C240</td>
<td>1.52786</td>
<td>78.2806</td>
<td>8.15</td>
</tr>
<tr>
<td>C260</td>
<td>1.39605</td>
<td>55.0469</td>
<td>10.59</td>
</tr>
<tr>
<td>C320</td>
<td>1.35794</td>
<td>46.1754</td>
<td>12.28</td>
</tr>
</tbody>
</table>

Table 3 Elastic modulus of defective Fullerenes in Tera Pascal.

<table>
<thead>
<tr>
<th>C(20)</th>
<th>C(40)</th>
<th>C(60)</th>
<th>C(80)</th>
<th>C(180)</th>
<th>C(240)</th>
<th>C(320)</th>
<th>C(60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
<tr>
<td>1.35794</td>
<td>1.39605</td>
<td>1.52786</td>
<td>1.56882</td>
<td>1.57889</td>
<td>1.62755</td>
<td>1.86514</td>
<td>1.98039</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.98039</td>
</tr>
</tbody>
</table>
Fig. 8 Young's modulus variation of different defective Fullerenes of C_{60}.

Fig. 5 Loading of Fulleren in finite element modeling.

Fig. 6 Variation of force – displacement under compression of C_{60}.

Fig. 7 Variation of force – displacement under compression of C_{720}.
