Volume 20, Issue 9 (September 2020)                   Modares Mechanical Engineering 2020, 20(9): 2275-2287 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohitzadeh S, Hashemi S. Experimental and Numerical Evaluation of Momentum Variations Effect of Striker on Fracture Energy in Charpy Impact Testing of API X65 Steel. Modares Mechanical Engineering 2020; 20 (9) :2275-2287
URL: http://mme.modares.ac.ir/article-15-38867-en.html
1- Mechanical Engineering Department, Engineering Faculty, University of Birjand, Birjand, Iran
2- Mechanical Engineering Department, Engineering Faculty, University of Birjand, Birjand, Iran , shhashemi@birjand.ac.ir
Abstract:   (1815 Views)

In this study investigated the effects of momentum variations on fracture energy in Charpy impact testing of API X65 steel by experimental and numerical methods. Experimental analysis was conducted in the various speed of impact about 3.50 to 5.72 m/s and impact energy varied about 450 to 1200 J. The experimental results showed that increase of about 63% in impact speed increased the fracture energy about 15%, because of material properties dependence on loading rate. Numeral studies were performed in two categories with ABAQUS software. First mass variation in constant velocity assumed standard quantity about 5.5 m/s in which impact energy varied about 300 to 1200 J and the second, velocity variation with constant mass assumed 50 kg that impact energy varied about 625 to 1600 J. The simulation results showed the variations in mass had not any effect in fracture energy and in all analyses, it was about 265 J. However, increasing the velocity variations with constant mass, caused a slight reduction of about 5% in the fracture energy. The reason for the difference between experimental and numerical results is the lack of consideration of the effect of strain rate on mechanical properties of tested steel in numerical analysis.

Full-Text [PDF 1424 kb]   (3873 Downloads)    
Article Type: Original Research | Subject: Metal Forming
Received: 2019/12/9 | Accepted: 2020/07/8 | Published: 2020/09/20

References
1. 1- Hashemi SH, Mohammadyani D. Charactrisation of weldment hardness, impact energy and microstructure in API X65 Steel. International Journal of Pressure Vessels and Piping. 2012;98:8-15. [Link] [DOI:10.1016/j.ijpvp.2012.05.011]
2. Tóth L, Rossmanith HP, Siewert TA. Historical background and development of the Charpy test. European Structural Integrity Society. 2002;30:3-19. [Link] [DOI:10.1016/S1566-1369(02)80002-4]
3. Wu YY, Yu H, Lu C, Tieu AK, Godbole A. Transition of ductile and brittle fracture during DWTT by FEM. 13th International Conference on Fracture (ICF). China: Curran Associates, Inc; 2013. pp. 1648-1655. [Link]
4. ASTM. ASTM E23-07a, notched bar impact testing of metallic materials [Internet]. Pennsylvania: ASTM International; 2011 [Unknown Cited]. available from: http://mhriau.ac.ir/_DouranPortal/Documents/ASTM%20E23%20%28impact%20test%29_20160406_233024.pdf [Link]
5. Lee SM, Cheon JS, Im YT. Experimental and numerical study of the impact behavior of SMC plates. Composite Structure. 1999;47(1-4):551-561. [Link] [DOI:10.1016/S0263-8223(00)00021-0]
6. Liu Y, Yaghoubi AS, Liaw B. Low-velocity impact study on GLARE FMLs using various indenter. Journal of Aerospace Engineering. 2014;27(2):325-335. [Link] [DOI:10.1061/(ASCE)AS.1943-5525.0000250]
7. Wang W, Chouw N, Jayaraman K. Effect of thickness on the impact resistance of flax fiber-reinforced polymer. Journal of Reinforced Plastics and Composites. 2016;35(17):1277-1289. [Link] [DOI:10.1177/0731684416648780]
8. Clutton EQ, Chanell AD. Energy partitioning in impact fracture toughness measurements. In: Williams JG, Pavan A, editors. Impact and dynamic fracture of polymer and composites (ESIS 19). Hoboken: Wiley; 1995. pp. 215-224. [Link]
9. Harry PG, Marshall GP, Ward AL, Pearson D. The Prediction of long term failure properties of plastic pressure pipe. International Conference Plastic Pipes, 21-24 Sep 1992, Koningshof, Netherlands. Volume VIII. Akron, Oh: Smithers Rapra Publishing; 1998. [Link]
10. Leevers PS. Impact and rapid crack propagation measurement techniques. Mechanical Properties and Testing of Polymers. 2000;3:130-134. [Link] [DOI:10.1007/978-94-015-9231-4_28]
11. de Luna S, Fernández-Sáez J, Pérez-Castellanos JL, Navarro C. An analysis of the static and dynamic fracture behavior of a pipeline steel. International Journal of Pressure Vessels and Piping. 2000;77(11):691-696. [Link] [DOI:10.1016/S0308-0161(00)00058-2]
12. Lee WS, Lin CF, Liu TJ. Impact and fracture response of sintered 316L stainless steel subjected to high strain rate loading. Material Characterization. 2007;58(4):363-370. [Link] [DOI:10.1016/j.matchar.2006.06.004]
13. Nurul Fazita MR, Abdul Khalil HPS, Nor Amira Izzati A, Rizal S. Effects of strain rate on failure mechanisms and energy absorption in polymer composites. In: Jawaid M, Thariq M, Saba N, editors. Failure analysis in biocomposites, fibre-reinforced composites and hybrid composites, Woodhead Publishing series in composites science and engineering. Sawston: Woodhead Publishing; 2019. [Link] [DOI:10.1016/B978-0-08-102293-1.00003-6]
14. Majidi-Jirandehi AA, Hashemi SH. Weld metal fracture characterization of API X65 steel using drop weight tear test. Materials Research Express. 2018;6(1). [Link] [DOI:10.1088/2053-1591/aae797]
15. Hashemi H, Hashemi SH. Investigation of macroscopic fracture surface characteristics of API X65 steel using three-point bending test. Modares Mechanical Engineering. 2019;19(7):1591-1600. [Persian] [Link]
16. Ramachandra S, Sudheer Kumar P, Ramamurty U. Impact energy absorption in an Al foam at low velocities. Scripta Materialia. 2003;49(8):741-745. [Link] [DOI:10.1016/S1359-6462(03)00431-7]
17. Kim JH, Kim D, Han HN, Barlat F, Lee MG. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling. Materials Science and Engineering: A. 2013;559:222-231. [Link] [DOI:10.1016/j.msea.2012.08.087]
18. Wang W, Ma Y, Yang M, Jiang P, Yuan F, Wu X. Strain rate effect on tensile behavior for a high specific strength steel: From quasi-static to intermediate strain rates. Metals. 2018;8(1):11. [Link] [DOI:10.3390/met8010011]
19. Varga T, Loibnegger F. Low striking velocity testing of precracked cbarpy-type specimens. In: Siewert T, Manahan M. editors. Pendulum impact testing: A century of progress. Pennsylvania: ASTM International; 2000. pp. 267-285. [Link] [DOI:10.1520/STP14400S]
20. Chaouadi R, Puzzolante JL. Loading rate effect on ductile crack resistance of steels using precracked Charpy specimens. International Journal of Pressure Vessels and Piping. 2008;85(11):752-761. [Link] [DOI:10.1016/j.ijpvp.2008.08.004]
21. Lee WS, Lin CF, Chen TH, Huang CS. Dynamic shear properties of alloy 718 over wide temperature range. Materials Transactions. 2012;53(10):1758-1764. [Link] [DOI:10.2320/matertrans.M2012073]
22. Lee WS, Hsu MC. Mechanical properties and dislocation substructure of inconel 690 alloy impacted at cryogenic temperatures. Materials Transactions. 2014;55(11):1689-1697. [Link] [DOI:10.2320/matertrans.M2014165]
23. Boyce BL, Dilmore MF. The dynamic tensile behavior of tough, ultrahigh-strength steels at strain-rates from 0.0002 s−1 to 200 s−1 International Journal of Impact Engineering. 2009;36(2):263-271. [Link] [DOI:10.1016/j.ijimpeng.2007.11.006]
24. Sahraoui S, El Mahi A, Castagnède B. Measurement of the dynamic fracture toughness with notched PMMA specimen under impact loading. Polymer Testing. 2009;28(7):780-783. [Link] [DOI:10.1016/j.polymertesting.2009.06.005]
25. Hwang B, Lee S, Kim YM, Kim NJ, Yoo JY, Woo CS. Analysis of abnormal fracture occurring during drop-weight tear test of high-toughness line pipe steel. Material Science and Engineering: A. 2004;368(1-2):18-27. [Link] [DOI:10.1016/j.msea.2003.09.075]
26. Fathi-Asgarabad, Hashemi SH. Comparison of experimental and numerical fracture energy of thermo-mechanical steel in drop weight tear test. 5th Iranian Pipe & Pipeline Conference, Razi Intl. Conference center, 10-11 Dec 2013, Tehran, Iran. Tehran: Shahid Beheshti University; 2013. [Persian] [Link]
27. Shahsavani AR, Hashemi SH. Experimental and numerical investigation of initial notch radius effect on Charpy fracture energy in API X65 steel. Amirkabir Journal of Mechanical Engineering. 2019;52(2):1-3. [Link]
28. Hashemi SH. Correction factors for safe performance of API X65 pipeline steel. International Journal of Pressure Vessels and Piping. 2009;86(8):533-540. [Link] [DOI:10.1016/j.ijpvp.2009.01.011]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.