Effect of using phase change materials in firefighters’ protective clothing on the thermal tolerating time

Alireza Zolfaghari†, Mohammad Fathian, Mohtsen Talebi

Department of Mechanical Engineering, University of Birjand, Birjand, Iran
* P.O.B. 97175/376, Birjand, Iran, zolfaghari@birjand.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 31 July 2015
Accepted 18 October 2015
Available Online 08 November 2015

Keywords:
Protective clothing
phase change materials
scorching conditions
thermal tolerating time

ABSTRACT

Under the critical thermal conditions, the human body cannot adapt itself to the environment using physiological thermoregulatory mechanisms. Under these conditions, using protective clothing is one of the effective ways to protect the human body against the thermal injuries. Therefore, in the present study, the effect of using Phase Change Materials (PCMs) on the performance of firefighters’ protective clothing has been numerically investigated under the critical scorching conditions. The main contribution of this study is the simultaneous modeling of PCM based protective clothing with physical and physiological mechanisms of the human body. For this purpose, multi-layer protective clothing with a PCM layer has been considered and its thermal performance has been investigated under scorching conditions for three different arrangements of the layers. The results show that the middle layer of protective clothing is the best position for implementing the PCM. Also, the best melting temperature for the mentioned PCM is about 30°C. Moreover, the results indicate that using the PCMs in protective clothing can increase the thermal tolerating time from 300 seconds (for non-PCM protective clothing) up to 900 seconds under the scorching conditions.

1. Thermal comfort
2. Critical condition

Please cite this article using:
نامی از آن محافظت کند. از جمله شهیده نوین در زمینه های طریقی پوشش‌های مفید، استفاده از مولای تغییر‌زاپاسده (PCM) در این پوشه‌ها، و این پوشه‌ها مبنا به کاهش تغییر حرارتی می‌باشد. آنلی از انتقال حرارت در طی فرآیندهای پوشه‌های تغییر‌زاپاسده در سال 2003، نجات‌یافته و به صورت آزمایشگاهی به سبب تغییر حرارتی آنها در پوشه‌ها است. عضویت از حالت یک سیستم باعث شده. تغییر حرارتی از طریق یک سیستم باعث شده. این سیستم باعث تغییر حرارتی می‌باشد.

جدول 1 میزان‌های حرارتی پوشش‌های پوششی

<table>
<thead>
<tr>
<th>شاخص حرارتی</th>
<th>اندازه پوشش</th>
<th>مقدار حرارتی (W/m²K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>0.038</td>
<td>72</td>
</tr>
<tr>
<td>2000</td>
<td>0.310</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>0.026</td>
<td>1.16</td>
</tr>
</tbody>
</table>

3- Vicarious shell

Table 1 Thermophysical properties of the protective clothing's layers [10]
... placement of PCM layer in the protective clothing.

370 2- Skin wettedness

2- Skin wettedness

\[T_{cl} = T_{sk} \]

Fig. 1 Three different arrangements for placement of PCM layer in the protective clothing.
پوست تغییر کرده و در نتیجه کسر جرمی بهخور پوست مانند شویده شد. (14) این از میان کسر جرمی بهخور پوست (λ) با دنی جرمی شارش خون را نشان می‌دهد:

\[
\lambda = 0.0148 + \frac{0.745}{3600m_{bl} + 0.585}
\]

که در آن جریان خون میان پوست و مرکز از (kg/m²s) بهره و بطور تابعی از سیگنال حاره‌ای می‌باشد. (18) از رابطه (19) می‌توان یافته شد که:

\[
\rho_m = 1.2 + 200 WSG_{cr}
\]

\[
3600(1 + 0.5CSg_{sk})
\]

یکی دیگر از سازوکارهای فیزیولوژیکی کنترل دمای ترکیب در شرایط می‌تواند به خور پوست در اثر ترکیب (6) فعال می‌شود.

\[
w = \min\left(0.06 + 0.94 \left(\frac{P_m}{P_{m,n}}\right) F_{\text{max}} \right)
\]

\[
\lambda = 0.0148 + \frac{0.745}{3600m_{bl} + 0.585}
\]

\[18\]

\[
\rho_m = 1.2 + 200 WSG_{cr}
\]

\[3600(1 + 0.5CSg_{sk})
\]

\[(18)\]

\[(19)\]

\[(20)\]

\[(21)\]

\[(22)\]

\[14\]

\[15\]

\[16\]

\[17\]

\[18\]

\[19\]

\[20\]

\[21\]

\[22\]

\[1\] Gage

\[2\] Two-node

\[3\]

\[4\]

\[5\]

\[6\]

\[7\]

\[8\]

\[9\]

\[10\]

\[11\]

\[12\]

\[13\]

\[14\]

\[15\]

\[16\]

\[17\]

\[18\]

\[19\]

\[20\]

\[21\]

\[22\]

\[1\] Gage

\[2\] Two-node

\[3\]

\[4\]

\[5\]

\[6\]

\[7\]

\[8\]

\[9\]

\[10\]

\[11\]

\[12\]

\[13\]
Fig. 2 Flowchart of the present study calculations

1- Thermal Sensation (TSENS)

input data and initial conditions

Solving the clothing equation (Eq.1) with its related boundary conditions (Eqs. 3 & 4)

Calculating Q_{sens} from Eq. (7)

Evaluating the body control signals from Eqs. (10) to (11)

Calculating the thermoregulatory parameters from Eqs. (14) to (17)

Solving the body equations(Eqs. 21 and 22) and evaluating T_a and T_v

Calculating thermal sensation (TSENS) from Eq. (24)

Yes $t < \text{Final time}$

No

Output the desired parameters

In this study, the thermal sensation ($TSENS$) was calculated using the following equation:

$$TSENS = \begin{cases}
0.0033(M-W) + 36.30 & T_a < T_b \\
0.0060(M-W) + 36.67 & T_b < T_a
\end{cases}$$

Where T_a and T_b are the ambient and body temperatures, respectively.

1. Thermal Sensation (TSENS)
شکل 5. مقایسه نتایج تحقیق حاضر با نتایج غربی آنری و تیان [20]

شکل 4. مقایسه نتایج تحقیق حاضر با نتایج غربی آنری و تیان [16]

شکل 5. حرارتی فرد در شرایط حرارتی افزایش حرارتی سوزانی تحت شرایط حرارتی ریزشی به ازای تنفس آماده در شرایط حرارتی و تغییرات آنری و تیان [20]

شکل 3. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [20]

شکل 6. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [16]

شکل 7. مقایسه نتایج تحقیق حاضر با نتایج غربی آنری و تیان [20]

شکل 8. مقایسه نتایج تحقیق حاضر با نتایج غربی آنری و تیان [16]

شکل 9. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [20]

شکل 10. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [16]

شکل 11. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [20]

شکل 12. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [16]

شکل 13. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [20]

شکل 14. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [16]

شکل 15. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [20]

شکل 16. مقایسه نتایج تحقیق حاضر با نتایج عادی و نظری تیان و کان [16]
Fig. 6 Time variations of melting front location of PCM in protective clothing with arrangement of Case 1

Fig. 8 Time variations of skin mass fraction for different melting temperature of PCM used in Case 1 protective clothing

Fig. 7 Time variations of skin wettedness due to regulatory sweating for a person with protective clothing with arrangement of Case 1
2-5

واکنش‌های پیش‌گیری ماده تغییر‌نارنجی در پوشش‌های برشی را در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی در پوشش‌های برشی را در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی در پوشش‌های برشی را در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی

6

در این مطالعه بر اساس نتایج نشان داد که استفاده از مواد تغییر‌نارنجی در پوشش‌های محفظه مشابهی برای آرایش‌های گرمایی در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی در پوشش‌های برشی را در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی در پوشش‌های برشی را در حدود 300 ثانیه از آغاز بااد از ماده تغییر‌نارنجی در برش کم‌نارنجی

Fig. 9

Fig. 10

Fig. 11

Fig. 12
7-Fundamentals

[34] M. Solla, Analysis of thermal performance of phase change material used for building wall insulation, MSc Thesis, Department of Mechanical Engineering, University of Birjand, Birjand, 2013. (in Persian)

