مدل سازی دینامیکی ربات‌های زمینی و فضایی در حالت زنجیره‌ای براساس فرمی از معادلات پوتزمن - هامل

عبدالможید خوشنودی، اسحاق آزار، سید محمدامین رضوی

چکیده

در این مقاله، بر اساس فرم‌های معادلات پوتزمن-هامل (معادلات لارژر بر حسب شیء مختصاتی) استخراج گردیده و برای این کاربردی جهت حل مدل‌سازی دینامیکی ربات‌های زمینی و فضایی، با استفاده از نرم‌افزار ADAMS منطقه پردازش عصبی در حالی زنجیره‌ای آن را استخراج است. این روش به عنوان روشی جدیدی برای حساب‌رسانی مدل‌سازی ربات‌های پیشرفته انتخاب شده است. این مدل گوناگونی از ربات‌ها را دربر گرفته و به تعداد زنجیره‌ای براساس فرمی از معادلات پوتزمن-هامل استخراج گردیده است.

Dynamics modeling of open-chain terrestrial and space robots using a form of Boltzmann-Hamel equations

Abdol Majid Khoshnood¹, Es'hagh Azad¹, Seyed Mohammad Amin Razavi²

1- Faculty of Aerospace Engineering, Khaje Nasir Toosi University, Tehran, Iran
2- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
³-P.O.B. 16569-83911, Tehran, Iran, khoshnood@kntu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 09 January 2016
Accepted 24 March 2016
Available Online 19 June 2016

Keywords:
Boltzmann-Hamel equations
Quasi-coordinates
open-chain robots
space robots
terrestrial robots

ABSTRACT

In this article, a form of Boltzmann-Hamel equations (Lagrange’s equations in terms of quasi-coordinates), different from the latter’s standard form and avoiding its structurally inherent complexity, is derived based on which a general algorithm for the dynamics modeling of open-chain terrestrial and space robots with an arbitrary number of rigid elements is presented. This form of Boltzmann-Hamel equations is shown to be particularly advantageous in terms of not requiring the determination of the kinetic energy as a function of generalized coordinates and quasi-velocities, representing generalized forces in terms of body basis vectors and offering a panoramic view of the dynamics of the systems. In the act of developing the algorithm, three highly useful kinematic identities are derived via comparison between the single rigid body equations derived from both the standard and the proposed form of Boltzmann-Hamel equations. These identities are then used to considerably simplify the final dynamics model of both systems. Finally, the equations of motion for a two-link terrestrial robot is derived using:

Kane's Method

4 Kane's Method
2- Portrait شرح راه‌یافتن گالری ارزشی ربات‌های زمینی و فضایی به همراه نمودارهای گرافیکی و شکل‌ها.

3- مدل‌سازی و شبیه‌سازی سیستم‌های فضایی و زمینی

3-1- انتخاب مختصات تعمیم‌یافته مستقل

منبع: کتاب مهندسی مدارس شیراز 1395، صفحه 16، شماره 6
دولتی انتخاب داده شده، از الگوریتم انتخاب داده شده است. این مسئله در چنین مواردی که عضویت یکی از مجموعات نهایی به‌جوار داده شده است، برای مثال در مواردی که جواب‌های درست و نادرست داده شده است، برای مثال در مواردی که جواب‌های درست و نادرست داده شده است.
عبارت‌هایی به فرم $\{c^*_0 \cdots c^*_n \}$ و $\{d^*_0 \cdots d^*_n \}$، در دو رابطه اخیر می‌شود که به‌سیستم روابط

$$[c^*_0]^T [c^*_1]^T \cdots [c^*_n]^T = \begin{bmatrix} \frac{\partial (\omega_1)}{\partial (\alpha_1)} \\ \vdots \\ \frac{\partial (\omega_n)}{\partial (\alpha_n)} \end{bmatrix}$$

در ماتریس کاس ماتریسی S_n و S_n^{-1} هردو قطری بلوکی یک‌ستندا و آنها حالت که در

$$[S_n]^{-T} \{S_n\}^{-1} = \begin{bmatrix} \frac{\partial (\omega_1)}{\partial (\alpha_1)} \\ \vdots \\ \frac{\partial (\omega_n)}{\partial (\alpha_n)} \end{bmatrix}$$

برای آنها به دست آمده در مرجع (14) این ماه‌های ماتریس

$$[S_n]^{-T} \{S_n\}^{-1} = \begin{bmatrix} \frac{\partial (\omega_1)}{\partial (\alpha_1)} \\ \vdots \\ \frac{\partial (\omega_n)}{\partial (\alpha_n)} \end{bmatrix}$$

بدین ترتیب داریم:

$$[c^*_0]^T \{c^*_1\}^T \cdots [c^*_n]^T \{\alpha^*_1 \cdots \alpha^*_n\} = 0$$

در ماتریس I، ماتریسی کاس بلوکی را توصیف می‌کند و لذا مدل‌های بعدی در این مدل باید برای دو عبارت باقی‌مانده به دست آید که در فرمول $\{S\}_i$ را به ارای سیستم‌های دیئماکیک مورد انتخاب در این مدل می‌باشد.

در مرجع (24) مدل‌های کاس اکلیمی جوی حول مرکز جرم برای جسم صلب از

$$\frac{\partial (\alpha_1)}{\partial (\alpha_1)} + [V_1] \{\alpha_1 \}^T = \{M^T/c\}$$

در دو رابطه اخیر نیروی وارد بر جسم نسبت به نقطه‌ی مرکز جرم و ماتریس‌های تغییرات این بادار در پایه‌بندی جسم است برای این مدل‌ها خاص داریم:

$$\begin{bmatrix} \{q_1\}^T \\ \{q_2\}^T \end{bmatrix} = \begin{bmatrix} [V_1] \{\alpha_1\}^T \\ [V_1] \{\alpha_2\}^T \end{bmatrix}$$

S_n = diag($[c^*_0 \cdots c^*_n]$, $[d^*_0 \cdots d^*_n]$)

$S_n^{-T} \{S_n\}^{-1} = \begin{bmatrix} \frac{\partial (\omega_1)}{\partial (\alpha_1)} \\ \vdots \\ \frac{\partial (\omega_n)}{\partial (\alpha_n)} \end{bmatrix}$

$$\frac{\partial (\alpha_1)}{\partial (\alpha_1)} = 0$$

با جایگذاری روابط باقی در رابطه (5) و سپس سطح دوم از جملات

$$\frac{d}{dt} \left(\frac{\partial \alpha_1}{\partial (\alpha_1)} \right)$$

در می‌باشد:

$\{S\}_i = \text{diag}(\{c^*_0 \cdots c^*_n\}, \{d^*_0 \cdots d^*_n\})$
محاسبه‌ی برای رابط فضایی

در محاسبه‌ی پدیده درک نحوه ارتباط میان کمیته‌های سیاسی و اقتصادی در طول جمهوری اسلامی به انواع مختلفی از یکدیگر است. این ارتباطات به روش‌های مختلفی برای سیاست‌کنندگان و سازمان‌ها تأمین می‌شود. در اینجا، بررسی‌هایی از ارتباطات مختلفی انجام شده است.

5-4 مثال

فرض کنید دو کمیته A و B وجود داشته باشند. ارتباط بین این دو کمیته می‌تواند با مقدار منفی اندام نشان دهد که این دو کمیته به هم تاثیر می‌دهند. همچنین می‌تواند با مقدار مثبت اندام نشان دهد که این دو کمیته به هم تاثیر می‌دهند.

برای محاسبه‌ی ارتباط بین این دو کمیته می‌تواند با استفاده از معادله‌های (45) و (46) انجام شود.

\[\frac{\partial \rho}{\partial (V_1)} = -\frac{m_1(V_1)}{2} \] (50)

\[\frac{\partial \rho}{\partial (A_1)} = \frac{m_1(V_1)}{2} \] (50)

از روابط اخیر خواهیم داشت:

\[\frac{\partial A_1}{\partial (V_1)} = m_1(V_1) \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود. با استفاده از این استفاده، یک مسئله دانشگاهی می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)

توجه به استفاده از این گراف در محاسبه‌ی راه‌هایی که به هم مربوط می‌شود. این گراف در گام دوم به راه‌هایی جدید اضافه می‌شود. در یک مسئله دانشگاهی از کمیته‌های مختلف دانشجویی به پرداخته از این دو کمیته می‌تواند به کمیته‌های جدید اضافه شود.

\[\frac{\partial \rho}{\partial (A_1)} = I_1 [I_1] \] (51)

\[\frac{\partial B_1}{\partial (A_1)} = I_1 [I_1] \] (51)
The role of each kinematic quantity in forming the total kinetic energy of the system

Figure 2: The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)

The role of each kinematic quantity in forming the total kinetic energy of the system

\[
\frac{\partial T}{\partial \bar{q}_i} = \frac{\partial T}{\partial \bar{q}_1} = (0)
\]

(55)

\[
\frac{\partial T}{\partial \bar{a}_i} = \frac{\partial T}{\partial \bar{a}_1} = \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} + \sum_{j=1}^{n} \frac{T_j}{\partial \bar{a}_1} (\bar{a}_j)
\]

(56)

\[
\frac{\partial T}{\partial \bar{a}_i} = \sum_{j=1}^{n} \frac{\partial T_j}{\partial \bar{a}_i} (\bar{a}_j)
\]

(57)
به‌طور کل یک رابطه دیگری قابل مطالعه در حالت‌های مختلف مشاهده می‌شود:

\[\frac{\partial \mathbf{C}}{\partial \mathbf{a}_i} = \frac{\partial \mathbf{c}_i}{\partial \mathbf{a}_i} \]

از طرف دیگر:

\[\frac{\partial \mathbf{c}_i}{\partial \mathbf{a}_i} = \left[\begin{array}{c} \mathbf{C} \cdot \mathbf{D} \cdot \mathbf{C}^{-1} \cdot \mathbf{c}_i \\ \frac{\partial \mathbf{c}_i}{\partial \mathbf{a}_i} \end{array} \right] \]

تاکنون ماتریس‌های گسترده در حالت‌های مختلف مشاهده شده‌اند.
\[
\frac{\partial \mathbf{r}}{\partial t} = \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (89)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (89)

ج: محاسبه ی دو ربات دو یکنگ های حرکت

\[
\Phi_1 = 2[R^* \{F_1 + 2[R^* \{(1) \begin{bmatrix} C_2 \end{bmatrix}^T \{R \} \} \} \} \{F_2 \} = 0.2 \begin{bmatrix} f_1 + f_2(1 + \cos \psi_2) \end{bmatrix} = 0.2 \begin{bmatrix} f_1 + f_2(1 + \cos \psi_2) \end{bmatrix}
\] (90)

\[
\Phi_2 = 2[R^* \{F_2 \} = 0.2 \begin{bmatrix} f_1 + f_2(1 + \cos \psi_2) \end{bmatrix}
\] (90)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
2 f_2 = \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} = \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
2 f_1 = \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} = \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)

\[
\begin{bmatrix} \frac{\partial \mathbf{r}}{\partial \mathbf{D}_1} \\ \frac{\partial \mathbf{r}}{\partial \mathbf{D}_2} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 2 \psi_2 \begin{bmatrix} 1 + \cos \psi_2 \end{bmatrix} \\ 2 \psi_2 \begin{bmatrix} 2 + 3 \cos \psi_2 \end{bmatrix} \end{bmatrix}
\] (91)
8. **Simulation of the First Generalized Coordinate**

![Fig. 6 Validation of the first generalized coordinate](image)

9. **Validation of the Second Quasi-Velocity**

![Fig. 7 Validation of the second quasi-velocity](image)

References

equations in nonholonomic systems, Advances In Theoretical And Applied Mechanics, Vol. 8, No. 1, pp. 7 – 26, 2015.
