Variation of Longitudinal Ultrasonic Wave Velocity in the Presence of a Thermal Gradient; Part 1: 2D Theoretical and Numerical Models

Ramin Shabani, Farhang Honarvar*

Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
* P.O.B. 19395-1999, Tehran, Iran, honarvar@kntu.ac.ir

ABSTRACT

Ultrasound test is a widely used non-destructive method for determining the mechanical and metallurgical properties of materials. In this method, ultrasonic wave velocity or attenuation coefficient is measured and measurement accuracy is very important. In this paper, variations of longitudinal wave velocity are studied in the presence of a thermal gradient both theoretically and numerically using a 2D model. A linear temperature distribution is assumed and the length of the work piece and the temperature of the hot side are considered as varying parameters. A new 2D theoretical model is developed for this problem. The test piece is made of 316L steel. To evaluate the proposed equation, we assume constant temperatures and the length of the work piece are varied in the range of 0.05-0.1 m. Then, we study the effect of the temperature of the hot side from 398 -998 K. By ANSYS software, a novel two-dimensional finite element model (FEM) is developed in axisymmetric state for this problem. The results of the theoretical model are compared with those obtained from the numerical model and very good agreement is observed.

Keywords:
Longitudinal ultrasonic wave
Thermal Gradient
Theoretical method
Finite element method

Please cite this article using:
Fig. 1 Heat transfer method and transferring longitudinal ultrasonic bulk waves in the presence of a thermal gradient by pulse-echo method

Fig. 2 Thermal boundary conditions of the problem in axisymmetric state

Downloaded from mme.modares.ac.ir at 8:12 IRST on Sunday October 18th 2020
در فاصلهی Δz دما نتیجه دارد و در نتیجه سرعت حرارت نیز نتیجه است.

سرعت حرارت C_t در توجه به E_1, T_1 توزیع نیست و در هنگام حرارت تحت تاثیر گرادیان حرارتی C_m در نظر گرفته می‌شود. با توجه به معادله (26) و در نتیجه معادله توزیع دما عبارت است:

$$T(r, z) = az + b$$

$$a = \frac{T_2 - T_1}{L}$$

در نتیجه معادله حرارت این شکل دارد:

$${d^2T \over dz^2} + \frac{T(z)}{L} + a = 0$$

برای محاسبه گرادیان درجه حرارت از معادله زیر استفاده می‌شود:

$${dL \over dz} = \frac{aL}{az + b}$$

(19) مقدار a به صورت مستقیم قابل اندازه‌گیری است و برای محاسبه طول قطعه در حضور گرادیان درجه حرارت در معادله 20 استفاده می‌شود.

$$L = \frac{aL}{az + b}$$

(20) در این معادله T ضریب ابتدای طول قطعه است. با توجه به معادله‌های 19 و 20 معادله‌های زیر بدست می‌آید:

$${dL \over dz} = \frac{aL}{az + b}$$

(21) با توجه به شرایط مرزی در معادله 21 که تغییرات سرعت حرارت در تغییرات φ سرعت حرارت با تغییرات فاصله z به معادله‌های 18 و 29 به صورت زیر است:

$$C(z) = C_1 \left[\frac{1 - \beta a}{E_1} \left(1 - 3a(L - z)\right) \right]$$

(22) بنابراین با توجه به معادله‌های 19 و 22 معادله‌های زیر بدست می‌آید:

$$L_f = L(1 - 0.5a(T_2 - T_1))$$

(23) در معادله زیر محاسبه می‌شود.

$$L = L_0(1 + a(T_1 - T_0))$$

(24) با توجه به معادله‌های 24 و 23

$$L_f = L(1 + a(T_1 - T_0)) \left(1 + \frac{a(T_2 - T_1)}{L} \right)$$

(25) معادله‌های 25 بر محاسبه طول L_f استفاده می‌شود.

3- معادله سرعت امواج فراصوتی

با تغییر طول قطعه به برآورد کهکشان و با تابع فرض نمودن دما در هر یک از این بارهای درجه حرارت می‌تواند با تغییر متغیر زیر استفاده شود:

$$A = \frac{3\beta a^2}{E_1}$$

(26) در معادله 26 به توجه به M_1 و M_2 در رابطه می‌تواند به صورت Δz نمودن زمان در اینجا است. رابطه محاسبه نتیجه سرعت امواج فراصوتی حجمی طولی در حضور گرادیان درجه حرارت است. با توجه به نظرات شده شده است. این معادله 36 بپذیر و در نتیجه تغییرات سرعت حرارت a, b, c و d در معادله 30 تغییرات z و $T(z)$ در نظر گرفته شده است. شکل 3 مثالی است. نشان $T(z)$ را نشان می‌دهد.

$$\Delta z = \sum_{i=1}^{N} \Delta t_i$$

4- بررسی اثر گرادیان حرارتی بر سرعت امواج فراصوتی

برای بررسی اثر گرادیان حرارتی بر روی سرعت امواج طولی بوزه، تغییرات متغیر اثر یک اثر را نشان می‌دهد. در معادله 36 از نظرات به صورت شکل داده، تغییرات اثر را نشان می‌دهد. شکل 3 آموزشی با زمان گردیده در حضور اعمال گرادیان درجه حرارت

$$\Delta L_f = \sum_{i=1}^{N} \Delta t_i$$

(27) مقدار ΔL_f به صورت مثال گردیده است. رابطه معادله 36 که تغییرات گرادیان حرارتی به صورت نشان می‌دهد. تغییرات اثر را نشان می‌دهد. شکل 3 آموزشی با زمان گردیده در حضور اعمال گرادیان درجه حرارت
The effect of temperature T_1 on velocity C_{m1}, C_{m2}, and $(C_{m1} + C_{m2})/2$, theoretically

![Diagram](image)

Fig. 4 The effect of temperature T_1 on velocity C_{m1}, C_{m2}, and $(C_{m1} + C_{m2})/2$, theoretically

Fig. 5 Temperature distribution from steady state thermal simulation by finite element analysis

Table 1

<table>
<thead>
<tr>
<th>T_1 (K)</th>
<th>C_{m1} (m/s)</th>
<th>C_{m2} (m/s)</th>
<th>E_1 (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>5872.7</td>
<td>5872.7</td>
<td>398</td>
</tr>
<tr>
<td>298</td>
<td>5872.7</td>
<td>5872.7</td>
<td>398</td>
</tr>
<tr>
<td>5920</td>
<td>5872.7</td>
<td>5872.7</td>
<td>398</td>
</tr>
<tr>
<td>11.66 x 10^6</td>
<td>5872.7</td>
<td>5872.7</td>
<td>398</td>
</tr>
<tr>
<td>210 x 10^6</td>
<td>5872.7</td>
<td>5872.7</td>
<td>398</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>a (m/s)</th>
<th>C_{m1} (m/s)</th>
<th>C_{m2} (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4000</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
<tr>
<td>-3333.33</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
<tr>
<td>-2857.14</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
<tr>
<td>-2500</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
<tr>
<td>-2222.22</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
<tr>
<td>2000</td>
<td>5872.7</td>
<td>5872.7</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>T_1 (K)</th>
<th>C_{m1} (m/s)</th>
<th>C_{m2} (m/s)</th>
<th>E_1 (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5896.50</td>
<td>5896.45</td>
<td>5896.91</td>
<td>398</td>
</tr>
<tr>
<td>5872.70</td>
<td>5872.51</td>
<td>5872.03</td>
<td>498</td>
</tr>
<tr>
<td>5848.60</td>
<td>5848.17</td>
<td>5766.35</td>
<td>598</td>
</tr>
<tr>
<td>5824.18</td>
<td>5823.42</td>
<td>5726.84</td>
<td>698</td>
</tr>
<tr>
<td>5799.43</td>
<td>5798.24</td>
<td>5676.49</td>
<td>798</td>
</tr>
<tr>
<td>5774.35</td>
<td>5772.63</td>
<td>5625.27</td>
<td>898</td>
</tr>
<tr>
<td>5748.92</td>
<td>5746.58</td>
<td>5573.16</td>
<td>998</td>
</tr>
</tbody>
</table>

The effect of temperature T_1 on velocity C_{m1}, C_{m2}, and $(C_{m1} + C_{m2})/2$.
عنوان یک بار خارجی به قطعه اعمال می‌شود. امواج فراصوتی طولی حجمی
در این مرحله به سطح جابجایی سیستم از سطح بالایی قطعه به درون قطعه ارسال می‌شود. فرکانس امواج ارسال شده می‌باشد. گام‌های
سیگنال امواج فراصوتی ارسال مورد استفاده در فرایند شیپسازی است.
شکل ۷ موج فراصوتی حجمی طولی ارسال شده به درون قطعه در
مرحله دور فرایند شیپسازی را نشان می‌دهد.

در مرحله دوم، فاصله زمانی بین دو سیگنال متغیر بازبندی شده از
سطح پایینی قطعه به دست می‌آید. باید تا پیشینه زمانی نمونه‌سازی
سیگنال‌های عبرت کرده از قطعه وسط قطعه ترکیب می‌شود. شکل ۸ نمونه‌ای از سیگنال‌های عبرت کرده از وسط قطعه است.

$$C_m = \frac{2L_f}{t}$$

مانند بررسی توری، اثر دور عامل مهم قطعه فری و دمای سطح
پایینی قطعه به روش مان حساب دو مطالعه می‌شود. همچنین نتایج این
بررسی عدیدی با نتایج توری مقایسه شد.

جدول ۴

<table>
<thead>
<tr>
<th>ل (م)</th>
<th>C_m- theoretical (م/س)</th>
<th>C_m-FEM (م/س)</th>
<th>خطای (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>5872.7</td>
<td>5854.9</td>
<td>0.303</td>
</tr>
<tr>
<td>0.06</td>
<td>5872.7</td>
<td>5854.8</td>
<td>0.305</td>
</tr>
<tr>
<td>0.07</td>
<td>5872.7</td>
<td>5861.98</td>
<td>0.183</td>
</tr>
<tr>
<td>0.08</td>
<td>5872.7</td>
<td>5861.18</td>
<td>0.196</td>
</tr>
<tr>
<td>0.09</td>
<td>5872.7</td>
<td>5860.4</td>
<td>0.209</td>
</tr>
<tr>
<td>0.1</td>
<td>5872.7</td>
<td>5862.37</td>
<td>0.176</td>
</tr>
</tbody>
</table>

جدول ۵

<table>
<thead>
<tr>
<th>T_2 (ک)</th>
<th>C_m- theoretical (م/س)</th>
<th>C_m-FEM (م/س)</th>
<th>خطای (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>398</td>
<td>5896.5</td>
<td>5872.1</td>
<td>0.414</td>
</tr>
<tr>
<td>498</td>
<td>5872.7</td>
<td>5854.9</td>
<td>0.303</td>
</tr>
<tr>
<td>598</td>
<td>5848.6</td>
<td>5834.6</td>
<td>0.239</td>
</tr>
<tr>
<td>698</td>
<td>5824.17</td>
<td>5817.3</td>
<td>0.118</td>
</tr>
<tr>
<td>798</td>
<td>5799.43</td>
<td>5798.4</td>
<td>0.018</td>
</tr>
<tr>
<td>898</td>
<td>5774.35</td>
<td>5780.3</td>
<td>0.103</td>
</tr>
<tr>
<td>998</td>
<td>5748.92</td>
<td>5761.2</td>
<td>0.214</td>
</tr>
</tbody>
</table>
7- مراجع

6- نتیجه‌گیری

در این مقاله، اثر حضور لگراند درجه حرارت در شرایط توزیع دما خشکی در قطعه بر روی سرعت برون فشاروسی بررسی شده است. این بدین گونه که برای بررسی مدل این حواشی، قطعه مورد بررسی قرار گرفت. نتایج نشان دهنده این است که حضور لگراند درجه حرارت بر روی سرعت برون فشاروسی مورد بررسی قرار گرفت، سپس اثر‌هایی قابل توجهی را در روند نفوذ و سختی قطعه در بر می‌گیرد.