Application of Isogeometric Analysis and Charged System Search Algorithm in Structural Shape Optimization

Seyed Mehdi Tavakkoli, Seyyed Sedigheh Mashmoul, Omid Khadem Hosseini

1- Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
2- Department of Civil Engineering, Azad University, Shahrood, Iran
* P.O.B. 3619995161, Shahrood, Iran, mtavakkoli@shahroodut.ac.ir

Abstract

In this article, the Charged System Search (CSS) algorithm is utilized for structural shape optimization that aims to minimize weight of a plane structure under stress constraints. Also, the Isogeometric Analysis (IA) is employed in order to analyze the structure. In the IA method, Non Uniform Rational B-Spline (NURBS) basis functions are used for approximation and interpolation of the displacement field as well as modelling geometry of the structure. Coordinates of the NURBS control points, that construct the geometry, can be considered as the design variables of the shape optimization problem. In earlier researches in structural shape optimization using the Finite Element (FE) method, boundaries of the structure were made by NURBS and the finite element discretization changed when the boundaries were modified in every iteration of the optimization process. As it mentioned, when the IA method is used the geometry is constructed by NURBS, therefore, contrary to using the FE method, the need for remeshing of the domain is eliminated and the computational cost will be remarkably decreased.

Keywords:
Structural Shape Optimization
Charged System Search
Isogeometric Analysis

Please cite this article using:
پیش‌نیایی‌های سیستم‌ها با استفاده از روش آیزوپوترامیک و کوردینات دارای استفاده

۱. برای سیستم یک‌مانتکان و به‌دست آوردن شهرهای مکانیکی کردن، تحت پیش‌نیایی نشان در گرفته شده است.

۲. در این بخش به‌طور خلاصه به معنی مسیر و سطح طراحی و نیز پرداخته‌اند.

۳. یک‌مانتکان منبع منبع است که تعیین گونه و مکانیکی سیستم‌ها نشان می‌دهد.

۴. مسیر طراحی و استفاده در گرفته شده است. استفاده در گرفته شده است.

۵. یک به‌طور نسبتاً طراحی و مکانیکی سیستم‌ها نشان می‌دهد.

۶. مسیر طراحی و استفاده در گرفته شده است. استفاده در گرفته شده است.

۷. یک به‌طور نسبتاً طراحی و مکانیکی سیستم‌ها نشان می‌دهد.

۸. مسیر طراحی و استفاده در گرفته شده است. استفاده در گرفته شده است.

۹. یک به‌طور نسبتاً طراحی و مکانیکی سیستم‌ها نشان می‌دهد.

۱۰. مسیر طراحی و استفاده در گرفته شده است. استفاده در گرفته شده است.

۱۱. در همه‌گان مکانیکی به‌طور نسبتاً طراحی و مکانیکی سیستم‌ها نشان می‌دهد.
هدف از بهینه‌سازی سازه‌ها تولید سازه‌هایی است که با وجود و خالقیت، از بیشینه توانایی و سختی در برابر تری‌های وارد بخارخوراندن، این فرآیند باید تا حدی با توجه به خاصیت و برترین عملکرد، در ساختاری با ریتمی کافی صدای خود نهایی ارائه شود.

بهینه‌سازی شکل سازه‌ها

در این بخش، تصمیم‌گیری در ارتفاعات و سرشتگی مختصات دینامیکی سازه‌های نیازمند، از طریق بهینه‌سازی، تا حدی با توجه به خاصیت و برترین عملکرد، در ساختاری با ریتمی کافی صدای خود، نهایی ارائه شود.

شکل ۵: تصمیم‌گیری در ارتفاعات و سرشتگی مختصات دینامیکی سازه‌های نیازمند، از طریق بهینه‌سازی، تا حدی با توجه به خاصیت و برترین عملکرد، در ساختاری با ریتمی کافی صدای خود، نهایی ارائه شود.
در حالت جریان فلکی یک طرح، در حقیقت برای نمونه، با استفاده از تابع‌های ذیل، می‌توانیم طرح جریان را مشخص کنیم:

\[\begin{align*}
 \mathbf{r} &= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \\
 \mathbf{F}(\mathbf{r}) &= \mathbf{F}(\mathbf{r})
\end{align*} \]

در این رابطه، \(\mathbf{r} \) یک نقطه قطبی تصادفی در فضای اصلی است و \(\mathbf{F}(\mathbf{r}) \) می‌باشد.

پس از محاسبه طرح جریان، می‌توانیم از این اطلاعات برای بهینه‌سازی طرح استفاده کنیم.

\[\begin{align*}
 \mathbf{a} &= 0.1 \times \max \{ \mathbf{x}_i^{\text{max}} - \mathbf{x}_i^{\text{min}}, 1 \} = 1, \ldots, n \\
 \mathbf{q}_i &= q_i, \quad \text{برای محاسبه} \quad \mathbf{F}(\mathbf{r}) = \mathbf{F}(\mathbf{r})
\end{align*} \]
مرحله سوم: کنترل میانی توافق در صورتی که یکی از شرایط زیر برقرار باشد، عمل بهینه‌بایی می‌شود:
1. حداکثر عدد تکرار ۸ فرآیند بهینه‌بایی بس از عدد مشخصی تکرار می‌شود.
2. عدد تکرارهای بدون بهبود در طرح‌های بهینه‌بایی بس از عدد مشخصی تکرار بدون هیچ گونه بهبود در طرح‌های دست آمده می‌شود.
3. اگر توانایی سیان متغیر نابع سابسکی (پرساس ون با برکتیکی) بهترین و سادنترین طرح، از یک متغیر مشخصی کمتر شود، عمل بهینه‌بایی می‌شود.

به نمودار نمایش ده، روش سیستم جستجوی ذرات بهدراد شده، مرحله الگوریتم در "شکل ۶" اینکه است.

شکل ۶: الگوریتم سیستم جستجوی ذرات بهدراد شده

شکل ۷: مدل سیستم مداری

شکل ۸: تاریخ‌های اولیه در مدل ۱-۵

شکل ۹: مدل سیستم مداری

شکل ۱۰: مدل سیستم مداری

ذکر:

{
\begin{align*}
\xi &= \{0,0.05,0.5,0.75,1.1\} \\
\eta &= \{0,0.05,1.1\}
\end{align*}

(39)

(40)

در "شکل ۸" و "شکل ۱۰" روش بهینه‌سازی باید مرحله دوم متغیر در جهت دوم داده شده است.

همچنین طرح بهینه‌بایی می‌تواند به حرکت یکی ثابت میدانی در روش سیستم جستجوی ذرات بهدراد در "شکل ۹" و در روش به‌روشی در جهت دوم متناسب در "شکل ۱۰" ارائه شد.

1. Sequential Quadratic Programming (SQP)

شکل ۷: الگوریتم سیستم مداری

شکل ۸: تاریخ‌های اولیه در مدل ۱-۵

شکل ۹: مدل سیستم مداری

شکل ۱۰: مدل سیستم مداری

ذکر:

{
\begin{align*}
\xi &= \{0,0.05,0.5,0.75,1.1\} \\
\eta &= \{0,0.05,1.1\}
\end{align*}

(39)

(40)

در "شکل ۸" و "شکل ۱۰" روش بهینه‌سازی باید مرحله دوم متغیر در جهت دوم داده شده است.

همچنین طرح بهینه‌بایی می‌تواند به حرکت یکی ثابت میدانی در روش سیستم جستجوی ذرات بهدراد در "شکل ۹" و در روش به‌روشی در جهت دوم متناسب در "شکل ۱۰" ارائه شد.

1. Sequential Quadratic Programming (SQP)
روند بهینه‌سازی شکل بندی آجر در هر دو روش سیستم جستجو ذرات باردار و برنامه‌بری ریاضی درجه دوم مثالی در "شکل 12" ارائه گردیده است. کانون‌نش جواب به‌دست آمده از الگوریتم ذرات باردار را می‌توان در "شکل 13" مشاهده نمود.

از مقایسه تابع به‌دست آمده از الگوریتم جستجوی ذرات باردار با نتایج مرجع [14] نتیجه می‌شود که وزن بهینه در مرجع یاد شده برابر با 9.00 می‌باشد که در حدود 3.278 درصد خطا دارد. وزن بهینه الگوریتم جستجوی ذرات باردار با 9.25 می‌باشد کانون‌نش طرح بهینه شکل آجر در مرجع [18] در "شکل 14" نمایش داده شده است.

روند بهینه‌سازی مثال ۵-۲

سیستم جستجو ذرات باردار

کانون‌نش مثال ۵-۲

شکل ۵-۲

جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>نیروی</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>شیفت</td>
<td>1200 kg/cm²</td>
</tr>
</tbody>
</table>

کانون‌نش مثال ۵-۲

شکل ۱۰

شکل ۱۱

"شکل ۱۳" نمایش داده شده است.

کانون‌نش مثال ۵-۲

شکل ۱۳

جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>نیروی</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>شیفت</td>
<td>1200 kg/cm²</td>
</tr>
</tbody>
</table>

کانون‌نش مثال ۵-۲

شکل ۱۱

"شکل ۱۳" نمایش داده شده است.

کانون‌نش مثال ۵-۲

شکل ۱۳

جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>نیروی</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>شیفت</td>
<td>1200 kg/cm²</td>
</tr>
</tbody>
</table>

کانون‌نش مثال ۵-۲

شکل ۱۱

"شکل ۱۳" نمایش داده شده است.

کانون‌نش مثال ۵-۲

شکل ۱۳

جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>نیروی</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>شیفت</td>
<td>1200 kg/cm²</td>
</tr>
</tbody>
</table>

کانون‌نش مثال ۵-۲

شکل ۱۱

"شکل ۱۳" نمایش داده شده است.

کانون‌نش مثال ۵-۲

شکل ۱۳

جدول

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>نیروی</td>
<td>1200 kg/cm²</td>
</tr>
<tr>
<td>شیفت</td>
<td>1200 kg/cm²</td>
</tr>
</tbody>
</table>

کانون‌نش مثال ۵-۲

شکل ۱۱

"شکل ۱۳" نمایش داده شده است.
(*)

5-3- مثال فیل سه بعدی

هنگامی هنگامی شکل با استفاده از 65 نقطه کانونی مدل شده است، شکل از سه زیر دامنه ترکیبی شده است. مدل استخوانی و ضریب بوبیون به ترتیب 0.3 و 0.06 می‌باشد و بارگذاری بر روی لبه انتهایی سمت راست مقدار 1800 N با مقدار تغییرات شیب تا 23/5 kgf، با استفاده از یکپار می‌روی "شکل 16" نمایش داده شده است. شکل 16 نشان داده شده است. وزن بهینه در این مثال از 138.134 kg است.

جدول 1 متغیرهای طراحی در روند بهینه سازی فیل سه بعدی [20]

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>5.625</td>
</tr>
<tr>
<td>y2</td>
<td>6.750</td>
</tr>
<tr>
<td>y3</td>
<td>7.875</td>
</tr>
</tbody>
</table>

جدول 2 متغیرهای طراحی مثال فیل سه بعدی در روش سیستم جستجوی دو بعدی

<table>
<thead>
<tr>
<th>متغیر طراحی</th>
<th>مقدار نهایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>5.625</td>
</tr>
<tr>
<td>y2</td>
<td>6.750</td>
</tr>
<tr>
<td>y3</td>
<td>7.875</td>
</tr>
</tbody>
</table>

Fig. 14 شکل 14 ظرف بهینه فیل سه بعدی در مرجع [14]

Fig. 15 شکل 15 تغییر متغیرهای طراحی در سلسله فیل دو بعدی

Fig. 16 شکل 16 روند بهینه سازی فیل دو بعدی

(*) Isogeometric Boundary Element method (IBE)
4-5) مثال تیپ دو سرگیردار

یک تیپ دو سرگیردار به همراه با کوتاه‌کننده در لبه‌های بالایی تیب همانند شکل ۱۹ در نظر گرفته شده است. مقادیر نیرو، ضریب بوسون و مدول استنشایی به ترتیب ۱۵۰۰، ۰.۱۵ و ۷۲۱ کیلوپسیک‌سیموندرای برابر با ۴۰۰۰ کیلوپسیک‌سیموندرای و ۱۵۰۰ کیلوپسیک‌سیموندرای و ۷۲۱ کیلوپسیک‌سیموندرای است. در این مثال شانه برابر ۱۵ در نظر گرفته شده است.

روند بهینه‌سازی نیز کالری نشان‌دهنده شکل جایه‌ی به دست آمده از الگوریتم دو سرگیردار با روش ترکیبی "شکل ۲۰" و "شکل ۲۱" نشان داده شده. وزن کمیه برابر با ۱۸۱۳۳ می‌باشد. جواب "شکل ۲۱" نشان دهنده لزوم داشتن مقطع روشنی در نگه‌داری که این از نظر مهندسی توجه به بهترین رایانه‌ای لازم ندارد. لحال در تکیه‌گاه‌ها کافی جواب نیست.

6) نتایج

در این مقاله بهینه‌سازی شکل سازه‌های دو سرگیردار با استفاده از روش اجزای خاص بهینه‌سازی و جستجوی خوشه‌ای ترکیبی انجام شده است. که در این وسیله و جستجوی خوشه‌ای بهینه‌سازی و جستجوی خوشه‌ای ترکیبی بیان می‌شود. بهینه‌سازی و جستجوی خوشه‌ای ترکیبی بیان می‌شود.

۹) A. Buffa, G. Sangalli, R. Vazquez, Isogeometric analysis in...

