Feedback Linearization and BackStepping controller aimed at position tracking for a novel five-rotor UAV

Mohamad Ali Tofigh¹, Mohamad J.Mahjoob*¹, Moosa Ayati¹

School of Mechanical Engineering, University of Tehran, Tehran, Iran.
* P.O.B. 11155-4563 Tehran, Iran, mahnajoo@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 01 June 2015
Accepted 11 July 2015
Available Online 15 August 2015

Keywords:
- Five rotor UAV
- Modifed quadrotor
- Feedback linearization
- Back stepping controller

ABSTRACT

Simple structure and high maneuverability of quadrotors have made them one of the most promising types of UAVs (Unmanned Aerial Vehicle). However, the main problem is their small payload capacity. In this paper, a novel five-rotor UAV is introduced. Dynamical model of UAV and two nonlinear controllers for trajectory tracking are developed. In the proposed UAV structure an extra propeller is added to the center of vehicle to improve the ability of lifting heavier payloads and open loop stability of quadrotor. The dynamic model is obtained via Newton Euler approach. The model is under actuated, nonlinear, unstable, and has strongly coupled terms. In order to have trajectory tracking two types of nonlinear controllers are designed for the UAV. First controller is designed based on input-output feedback linearization method. This controller involves high-order derivative terms and turns out to be quite sensitive to noises and modeling uncertainty. Second controller is a back-stepping controller based on the hierarchical control strategy that yields lower computational expense. Simulation results confirm acceptable performance of back stepping controller stability, position tracking, robustness in presence of external disturbance.

1.imple structure and high maneuverability of quadrotors have made them one of the most promising types of UAVs (Unmanned Aerial Vehicle). However, the main problem is their small payload capacity. In this paper, a novel five-rotor UAV is introduced. Dynamical model of UAV and two nonlinear controllers for trajectory tracking are developed. In the proposed UAV structure an extra propeller is added to the center of vehicle to improve the ability of lifting heavier payloads and open loop stability of quadrotor. The dynamic model is obtained via Newton Euler approach. The model is under actuated, nonlinear, unstable, and has strongly coupled terms. In order to have trajectory tracking two types of nonlinear controllers are designed for the UAV. First controller is designed based on input-output feedback linearization method. This controller involves high-order derivative terms and turns out to be quite sensitive to noises and modeling uncertainty. Second controller is a back-stepping controller based on the hierarchical control strategy that yields lower computational expense. Simulation results confirm acceptable performance of back stepping controller stability, position tracking, robustness in presence of external disturbance.

Feedback Linearization and BackStepping controller aimed at position tracking for a novel five-rotor UAV
2- Hovering

\[F = K_d (\Omega_1^2 - \Omega_2^2) + K_v \tau_x \]

\[\tau_x = K_v (\Omega_2^2 - \Omega_1^2) \]

Setup 2: "Kakooman" Negir Serlet Muhayd in Jalalaiye Mafloeh 2

\[D = K_d \Omega_1^2 + \text{گفتاری بای} \]

\[T = K_v \tau_x \]

\[\text{روت ای} \]
در راستای محور x به علت اینکه تابع از نظر محدود می‌باشد، فاصله میان دو نقطه عالی جامد در دستگاه بدنی نیز تابع دارای بخش‌های محدود می‌باشد. در سطح مقطع F، تابع x و y محدود می‌باشد.

همچنین حالت $x=r$ و $x=y$ هر دو نقطه محصول محورهای x و y می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.

برای شرایط انتقال P در سطح F مقدار K_{1} را به دست آورده تا دربرگیرنده است. در سطح F، تابع x و y محدود می‌باشد.

مقدار x_{0} و y_{0} محدود می‌باشند.
کنترل به روش خطا سازی پیش‌فوروارد و گام به گام برای یک عمل‌پذیرagation - مقدمه‌ی با پیکردنه‌ی جدید

معادله‌ی تغییر داده 16 نشان داده که که به در عینک این جسم در هر لحظه دوران سرعت گازهای جسم با نرخ زیادهای یک‌بار برای خواهد شد. نیروی عمومی معادلات 11 با ضریب خروجی کنترل به داشته را از زایمانی از یکندا گویی کننده می‌کند.

\[m\ddot{x} = u_1 \sin \theta \]
\[m\ddot{\phi} = -u_4 \sin \phi \cos \theta \]
\[l_1\ddot{\theta} = A_1 \Psi \phi - j_1 \Omega \phi + j_1 \Omega \phi \]
\[l_2\ddot{\theta} = B_2 \Psi \phi + j_2 \Omega \phi + j_2 \Omega \phi \]
\[l_1\ddot{\phi} = C_1 \theta - j_1 \Omega \phi + u_2 \]

۳- اطراف کنترل به روش خطا سازی پیش‌فوروارد

با توجه به یک گزینه از حدود معادلات حرکت در اینش از خطا جسم پیش‌فوروارد برای دستگاه می‌کنند. کنترل به روش خطا سازی پیش‌فوروارد استفاده می‌کنند.

\[mX = u_1 \sin \theta \]
\[mY = -u_4 \sin \phi \cos \theta \]
\[l_1 \ddot{\theta} = A_1 \Psi \phi - j_1 \Omega \phi + j_1 \Omega \phi
\]

۱۲- مدل‌سازی مدل‌سازی

با توجه به یک گزینه از حدود معادلات حرکت در اینش از خطا جسم پیش‌فوروارد برای دستگاه می‌کنند. کنترل به روش خطا سازی پیش‌فوروارد استفاده می‌کنند.

\[mX = u_1 \sin \theta + 2u_1 \phi \cos \theta - u_1 \theta ^2 \sin \theta + u_1 \theta \cos \theta \]
\[mY = (-u_4 + u_2 \phi ^2 + u_2 \theta ^2) \sin \phi \cos \theta + (2u_4 + u_2 \theta) \sin \theta \sin \phi - (2u_4 + u_2 \theta) \cos \phi \cos \theta + 2u_4 \theta \phi \sin \phi \sin \theta \]
\[mZ = (u_1 - u_2 \phi ^2 - u_2 \theta ^2 \cos \phi \cos \theta - 2u_4 + u_2 \theta) \sin \phi
\]
بازگشتی با در نظر گرفتن برخی حالت‌های سیستم معمول ورودی مجزا، طراحی کرده و مرتبطی کننده در مقایسه کل سیستم مورد استفاده قرار گرفته است.

اگر تغییر معنی‌داری حالت صورت پدیدار شود، می‌توان به معادلات سیستم را به فرم قضاوتی بیان کرد، بصورت (18)

\[X = \left[\begin{array}{c} x_2 \\ x_4 \\ x_6 \\ x_8 \\ x_{10} \\ x_{12} \\ (1/m)(x_1 x_3 x_5 - mg) \end{array} \right] \]

به همراه معادلات (18) با در نظر گرفتن ورودی‌های جدید، تمرکز اصلی مورد بوده که شکل داده به ورودی مجزا است. در این اثر، حالت مکانی اتاق یا کنترل مکانی زیر ضبط و مناسب‌سازی شده و با تغییر منفی معنی

\(x_1 = x_{1d} - x_1 \)

و با استفاده از لیاپانوف (20) مشتق زمانی آن بصورت

\(\dot{v}(z_1) = \frac{1}{2} z_1^2 \)

حاصل می‌گردد.

\(\dot{v}(z_1) = x_1 x_{1d} - x_1 \)

به تغییر ورودی مجزا و طراحی آن بیان می‌شود، به تغییر اصلاح می‌شناسد. با یک مبانی می‌گردد

\(\dot{v}(z_1) = -\alpha_1 z_1^2 \)

حالات در رابطه (21) در قرار یگرای صورت مقدار اضافهته (z) می‌باشد که جایگزین مقدار اضافهته واقعی (z) با آن برای مقدار اضافهته شده و با توجه به معادلات (22)

\[x_2 = x_2 - x_{1d} - \alpha_1 z_1 \]

\(\dot{v}(z_1, z_2) = \frac{1}{2} \frac{\alpha_1 z_1^2 + 2 z_1 A_1 x_4 x_6 - f_2 x_4 x_6 + J f_2 x_4 x_6 + \alpha_1 x_6}{I_z} - x_{1d} + a_1 x_2(a_1 x_2 - x_{1d}) \]

\(\dot{v}(z_1, z_2) = -\alpha_1 z_1^2 - (a_1 - \alpha_1) x_2^2 \leq 0 \)

و با طراحی ورودی کنترلی صورت:

\[u_2 = I_x \left(-\frac{A_1}{I_z} x_4 x_6 + \frac{J f_2}{I_z} x_4 x_6 + \frac{f_2}{I_z} x_4 x_6 + \alpha_1 x_6 + x_{1d} - a_1 x_2 \right) \]

\(\dot{v}(z_1, z_2) \) مقدار صفر به‌صرفه دوره و حالت x2 به مقدار مطلوب (رابطه (21)) و دشک که در نظر گرفته شده که در نتیجه آن، حالات x1، حالت x2 به یک مبانی شده x1 به مقدار مطلوب.
شکل 8: خروجی سیستم و مقادیر مطلوب را نماش می‌دهد، کوچک‌گیری زاویه پیچ و بروز در این نمودار، فرض دوم در ساده‌سازی معادلات حرکت را برقرار نموده و دقت معادلات (11) را تایید می‌کند همچنین نمودار خطای رددبای در شکل 9 و مقادیر نرم دوم خطای خروجی در جدول 2 نشان می‌دهد که رددبای مسر دارایی با دقت مناسب انجام می‌شود. تغییرات ورودی کنترلر نیز در شکل 10 قابل مشاهده می‌باشد.

جدول 2: پارامترهای عوامل پردازش

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>واحد</th>
<th>پارامتر</th>
<th>واحد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_t</td>
<td>kg</td>
<td>k_i</td>
<td>kg.m²</td>
<td>4-5</td>
</tr>
<tr>
<td>$l_y = l_y$</td>
<td>m</td>
<td>$l_z = l_z$</td>
<td>m</td>
<td>2-4</td>
</tr>
<tr>
<td>$l_z = l_z$</td>
<td>m</td>
<td>$l_y = l_y$</td>
<td>m</td>
<td>3-6</td>
</tr>
<tr>
<td>$l_y = l_y$</td>
<td>m</td>
<td>$l_z = l_z$</td>
<td>m</td>
<td>2-5</td>
</tr>
</tbody>
</table>

1-4 پایدارسازی

به منظور بررسی پایداری و قدرت کنترل سیستم حلقه مستقیم، با در نظر گرفتن ورودی مرجع ثابت بصورت $y_d = z_d = 2 \sin (t)$ پاسخ به ورودی پله شیب‌سازی شده است. در شکل 5 نموداری می‌شود که خروجی سیستم بدون فرآیندهای و بدون خطای اندازه‌گیری و بدون خطای شتاب‌گیری به ورودی مرجع همگرایی دارد. این امر در شکل 6 نموداری نیز تایید نموده و بدون خطای کنترل راهکاری بتواند کنترل کننده به وقوع نمایش داده شده است. پاسخ‌های ترکیبی از شکل خروجی کنترلر سریع‌تر از این پاسخ خلوت کنترلر زاویه می‌باشد. زیرا این پیک از شرایط لازم برای پایداری سخت‌تر کنترل سلسله‌مانی می‌باشد [18].

2-4 رددبای مسر مرجع

جهت ارزیابی عملکرد سیستم کنترلی در رددبای، پردنه با مستر مسر مرجع به معادله $r (t) = 2 \cos (t)$، $y_d = 2 \sin (t)$ در انتفاح2 متغیر تعیین شده شرایط باید به صورت $(\psi = \theta = \psi = X = -t)$ تعریف شود. پردنه بروزگزینه در شکل 7 نشان می‌دهد که سریع‌ترین کنترل کننده کار باعث افزایش ضریب فاز به رددبای مسر دارایی می‌باشد.

شکل 5: پاسخ پرداز با کنترل کننده کار باعث افزایش ضریب فاز به ورودی پله

شکل 6: ورودی کنترلر در پاسخ به سیگنال مرجع پله

شکل 7: سریع‌ترین کنترل کننده کار باعث افزایش ضریب فاز به ورودی پله

شکل 8: سریع‌ترین کنترل کننده کار باعث افزایش ضریب فاز به ورودی پله

شکل 9: سریع‌ترین کنترل کننده کار باعث افزایش ضریب فاز به ورودی پله

شکل 10: سریع‌ترین کنترل کننده کار باعث افزایش ضریب فاز به ورودی پله

مهدی مکابک مدرس، ادر 1394. دوره 15. شماره 9
4- مدلکر سیستم کنترلی در حضور ارتعاشی به منظور ارزیابی مکانیک سیستم کنترلی کام بکه عقب در برقراری ثباتی نیازمند است. نیروی آبادانی که در مدلی از برادران بود به شرط ترکیبی از دو تاریکی بود. فرکانس‌های مختلف با مقدار \(A(t) = (\sin(0.5\pi t) + \cos(0.2\pi t) + \sin(0.4\pi t) + \cos(0.6\pi t)) \) شده و 10 تایه سی بسیاری پیشنهاد شده و به این مدل X به دینامیک سیستم اعمال می‌گردد. همانطور که در شکل‌های 13 و 14 مشاهده می‌شود، سیستم حلقه بسته در حضور ارتعاش نایپایدار بوده و با فشار قابل قبول سیستم باید را پیدا کنند. سیستم دیپیوزیون برای مدل بهتر استفاده می‌شود. در نتیجه در شکل 11 نشان داده که کنترل دیپیوزیون در این شرایط جدید به شدت به دینامیک سیستم X جلوگیری نمی‌کند.

5- نتایج گیری

در این مقاله مدلسازی دینامیکی کامل یک مدل دیپیوزیون بدون سربی‌سازی دارای پیچ مخیبا است از نظر نیز به درستی مشابه شده و با توجه به دینامیک غیرخطی را در روش خصیصی پیش‌مرور ورودی خروجی باید کنترل پیدا و به دقت مطمئن می‌باشد. با استفاده در این شرایط جدید به دقت مطمئن می‌باشد. سیستم دیپیوزیون برای مدل بهتر استفاده می‌شود. در نتیجه در شکل 11 نشان داده که کنترل دیپیوزیون در این شرایط جدید به شدت به دینامیک سیستم X جلوگیری نمی‌کند.

شکل 13 برای مدلکر پیدا در حضور ارتعاش

شکل 11 خروجی سیستم در راهپیمایی سیستم دیپیوزیون فرکانس‌ها

شکل 12 برای مدلکر پیدا در حضور ارتعاش