Design and Aerodynamic Analysis of a Morphing Wing with Shape Memory Alloy Actuator

Hamid Basaeri, Mohammad Reza Zakerzadeh, Aghil Yousefi-Koma, Seyed Saeed Mohtasebi

Center of Advanced Systems and Technologies (CAST), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
* P.O.B. 11155-4653 Tehran, Iran, aykoma@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 18 November 2014
Accepted 07 February 2015
Available Online 04 April 2015

Keywords:
Morphing Wing
Smart Materials
Shape Memory Alloy
Design
Aerodynamic Analysis

ABSTRACT

The scope of the current investigation incorporates the entire process involved in design and development of a Shape Memory Alloy (SMA) actuated wing intended to fulfill morphing missions. At the design step, a two Degree-of-Freedom (DOF) mechanism is designed that is appropriate for morphing wing applications. The mechanism is developed in such a way that it can undergo two different DOF, i.e. gull and sweep, so that the wing can have maneuvers that are more efficient. Smart materials are commonly selected as the actuators due to their suitable thermo-mechanical characteristics. Shape Memory Alloy (SMA) actuators are capable of providing more efficient mechanisms in comparison to the conventional actuators due to their large force/stroke generation, smaller size with high capabilities in limited spaces, and lower weight. As SMA wires have nonlinear hysteresis behavior, their modeling should be implemented in a meticulous way. In this work, after proposing a two DOF morphing wing, an aerodynamic analysis of the whole wing for unmorphed and morphed wings is presented. The results show that the performance of the morphed wing in special flight regimes is improved.

Please cite this article using:
بهینه برای تمامی حالت‌های پرواز با استفاده از بلندی‌هایی با ابعاد ناب‌بندی نیم‌دار، این سه حالت در جنگ روی‌پایی دیده شده است و رتبه‌ها را در تخلیه‌های تحقیقاتی انجام دهد.

حقایق انجام‌شده در حوزه‌ی بلندی‌هایی با ابعاد ناب‌بندی نیم‌دار، این سه حالت در جنگ روی‌پایی دیده شده است و رتبه‌ها را در تخلیه‌های تحقیقاتی انجام دهد.

منبع: نیک‌بنیفیک، طرحی در صنعت هواپیمایی سال 2000

1- طبقهبندی تغییر شکل‌ها در بال

1.1- ماکزیم‌ها

1.1.1- پرواز‌های از دستگیری بر اساس ماکزیم‌ها که تغییر شکل‌ها در بال نیاز است، در زیر ذکر شده است.

1.1.2- مکانیزم‌ها

1.2- چرخش قسمت‌های بال

1.3- مکانیزم‌های سی‌ها

2- آزمایش طول در بخش‌هایی از بال

2.1- مقایسه شکل‌های پروازی در بال استاندارد

2.2- یک هزار میلی‌متر

2.3- آزمایش طول در بخش‌هایی از بال

2.4- مقایسه شکل‌های پروازی در بال استاندارد

3- الگوی تغییر شکل‌ها

3.1- ویژگی‌های بال

3.2- اثرات طول در بخش‌هایی از بال

3.3- مقایسه شکل‌های پروازی در بال استاندارد

4- آزمایش طول در بخش‌هایی از بال

4.1- ویژگی‌های بال

4.2- اثرات طول در بخش‌هایی از بال

4.3- مقایسه شکل‌های پروازی در بال استاندارد

5- تغییر شکل‌ها در بال

5.1- ماکزیم‌ها

5.2- چرخش قسمت‌های بال

5.3- مکانیزم‌ها

6- تغییر شکل‌ها در بال

6.1- ماکزیم‌ها

6.2- چرخش قسمت‌های بال

6.3- مکانیزم‌ها

7- خاکستر و نسبت کنار مکان‌ها

7.1- چگونه تغییر شکل‌ها در بال پروازی رواز

7.2- کیویتی، چیپ شاهن [7]

8- حساب مکان‌ها

8.1- چهار قسمتی هواپیمای بال‌بندی در بال استاندارد

9- ماکزیم‌های بال‌بندی

9.1- چگونه تغییر شکل‌ها در بال پروازی رواز

9.2- کیویتی، چیپ شاهن [7]

10- مکانیزم‌ها

10.1- چگونه تغییر شکل‌ها در بال پروازی رواز

10.2- کیویتی، چیپ شاهن [7]
درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

اگر sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزم حرکت، مکانیزم حرکت را تائید می‌کند، در درجه ای که مکانیزم حرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,

درجه ای که sender بوده و در انتهای مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند.

sender در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند، در درجه ای که مکانیزمحرکت، مکانیزمحرکت را تائید می‌کند,
شکل ۸ مزان احراز مکانیزم به‌عنوان تابعی از فاصله سطح ابرافول برای فاصله مختل سیم از محوور درون در تغییر شکل گل

شکل ۷ تعریف مکانیزم به‌عنوان سیم آیز آغاز انقلاب در درجه ازدای سونیب

شده است در این حالت، اگر هرکدام از سیمه‌ها تحريك شود، طول کم شده و به علت ایجاد زاویه ناشنادی شده در مکانیزم می‌شود. (3)

شکل ۹ آمار احراز مکانیزم به‌عنوان تابعی از فاصله سطح ابرافول برای فاصله مختل سیم از محوور درون در تغییر شکل گل

ب) در نظر گرفتن کرنش مکانیزم قابل ایجاد در سیمه‌های آیز آغاز انقلاب و استفاده از روابط هدفی، در هر کدام از درجه‌های آزادی می‌توان به مراتب

چرخ مکانیزم به‌عنوان صورت روابط (1) و (2) دست یافت.

\[
\tan(\varphi) = \frac{L_{th}}{a_s} \\
\sin(\theta) = \frac{1}{2 \pi} \left[1 - (1 - \varepsilon)^2 \right]
\]

از طرفی، رابطهی طول نویسی و فاصله‌ی سطح‌های در هر کدام از درجه‌های آزادی روابط (3) و (4) است.

\[
L_{th} = \frac{d_{2}}{1 - \varepsilon} \\
L_{th} = \sqrt{d_{1}^2 + d_{2}^2}
\]

همان‌طور که در رابطه‌ی فوق ملاحظه می‌گردد، مقادیر فاصله‌ی بین سطح‌های را به‌عنوان مشابهی با طول نیم بزرد و فاصله‌ی سیم از محوور درون، در قرنطیناهای سیم که مصرف مکانیزم احراز مکانیزم آزادی، تأثیر بسیار

دارد از آنجا که اگر در طول اولیه سیم، طول مکانیزم را افزایش داده و کاربرد آن را در یک باید شکل‌بندی گیرش در کنید. لازم است تا به طول

اولیه سیم و فاصله‌ی سیم از محوور درون مصالح‌ی برقرار شود به همین منظور، میزان احراز مکانیزم در هر کدام از درجه‌های آزادی به‌عنوان تابعی از

فاصله سطح ابرافول برای برآوردن صورتی سیم از محوور درون در شکل

شکل ۸ مزان احراز مکانیزم به‌عنوان تابعی از فاصله سطح ابرافول برای فاصله مختل سیم از محوور درون در تغییر شکل گل

شکل ۷ تعریف مکانیزم به‌عنوان سیم آیز آغاز انقلاب در درجه ازدای سونیب

شکل ۹ آمار احراز مکانیزم به‌عنوان تابعی از فاصله سطح ابرافول برای فاصله مختل سیم از محوور درون در تغییر شکل گل

یک مکانیزم نویسی. دست یافت (1)

1. Dynaloy
در این مکانیزم، می‌توان از این روش برای ساخت اجزای مختلف از ماده‌های مختلف استفاده کرد. بنابراین، در مکانیزم طراحی شده در شکل 10، ساخت اجزای مختلف مکانیزم بر روی نمود.
جدول 1 آرایه‌گی گردیده است این ویژگی‌ها به دو فضای مکانیکی و الکتریکی تقسیم‌بندی گردیده است.

4- ویژگی‌های مکانیکی
ویژگی‌های کم مکانیزم توصیف‌یافته به منظور ایجاد نگیرش شکل در بال از مدل 24 و 4 و مدول 20 و 6 توصیف شده است.

5- توصیف مکانیزم
این مکانیزم به‌وسیله طراحی و ساخته شده است که بهترین برتری‌های کم در بال به‌وسیله طراحی و ساخته شده است.

6- تحلیل هی‌آروپدینامیک
پس از طراحی بال بال برای پیوسته‌‌تر کردن از ارتفاع بال و در مورد ارزیابی فرآیندهای تغییرات در مکانیزم این مکانیزم آرودینامیک بال به‌وسیله روش‌های محاسباتی و تحلیل‌های شبیه‌سازی توسط برای استفاده در منطقه‌های مختلف رایجی، می‌توان از مکانیزم بر اساس نمود.
پایا انجام یافته است. همچنین نو ارک ترین حرکت برای فشار انطباق گرده است و برای مدل‌های جالب و مزبور از علائم عصبی استفاده گرده است. در تابعی از تقلید هر یک از بانه‌ها مانند کامپیوتر راه حل در هر وقت با یک متغیر خواهد یافت. در این تابع با تغییر سه شکل اختلاف و استفاده از از یک سلسله از هر دو متغیر را به دو بال داد قابل تغییر باشد. در این تابع با تغییر سه شکل اختلاف و استفاده از از یک سلسله از هر دو متغیر را به دو بال داد قابل تغییر باشد.

(الف) نو ارک ترین حرکت برای فشار انطباق گرده است. در تابعی از تقلید هر یک از بانه‌ها مانند کامپیوتر راه حل در هر وقت با یک متغیر خواهد یافت. در این تابع با تغییر سه شکل اختلاف و استفاده از از یک سلسله از هر دو متغیر را به دو بال داد قابل تغییر باشد.

(ب) شکل ۱۵ خطوط جویان و سطح بال تغییر شکل نیافته (لد), زاویه حمله ۱۵ درجه (ب) زاویه حمله ۱۵ درجه، زاویه حمله ۱۵ درجه
تمامی سطح‌های نوار در دسترس برای تولید لیفت و ریز ناهیده در اگرچه کمی از
نیروی درگ کاسته شده است.

سونتیپ نیز هسته‌ای این تغییر نیز توسط تغییرات راوه در هرتکم از
چهار مکانیزم حاصل می‌شود. این قسمت نیز تغییر شکل بیشینه‌ی بال
مورد تحلیل و بررسی قرار گرفته است.

همانند تحلیل‌های قبلی، این تغییر شکل بافت در حالت سونتیپ تحت دو
شراط پروای مورد بررسی قرار گرفته است و خطوط جریان و توزیع فشار از
این تحلیل‌های در شکل 19 و شکل 20 نشان داده شده‌اند.

![شکل 19 توزیع فشار بر حسب پاسخ روش سطح بال تغییر شکل بافت افقی (الف) زاوه حمله صفر درجه (ب) زاوه حمله 15 درجه](image1)

همانطور که از این تصویر قابل مشاهده است، به مانند نیز در بیانه نیز تغییر شکل بافت در حالت گال، این بال نیز در تولید نیروی لیفت از تمامی سطح‌های به‌صورت مهر عمل نمی‌کند و اکثر نیروی لیفت در رشته‌ی بال تولید می‌شود. همچنین به دلیل وجود جریان نوسه بافتی از رنگنی که ناک بال، بال دچار یک هدر رفت‌اضافی لیفت و کاهش بارده‌ی می‌شود در نهایت، وجود
ورکس‌های یحیی در لیفت بال در روی‌ای کوچک حمله بیشتری می‌کند که
این بال برای وضعیت‌های گروه به مانند بال تغییر شکل بافت نیست
اگرچه، وجود این جریان حاکی از این موضوع است که این تغییر شکل بال
گشتاورهای یپشیشی به وجود می‌آورد که باید مورد مورد مورد مورد مورد
این پی‌دیده در قسمت بعد به‌صورت گمی مورد بحث قرار می‌گیرد.

![شکل 17 خطوط جریان روی سطح بال تغییر شکل بافت افقی (الف) زاوه حمله صفر (درجه (ب) زاوه حمله 15 درجه](image2)

* مزیت‌های آپیدونباومیکی

تولید این انجام شده در قسمت قبل به‌صورت از جریان‌های روی بال و یک
ویله به‌منظور مقایسه‌ی کینی بین وضعیت‌های مختلف تغییر شکل آنها
می‌دهد اگرچه، می‌توان با توجه به نتایج عمده حاضر شده به مقایسه‌ی
کمی نیز پرداخته، در تحلیل‌های انجام شده در این بخش، خصوصیات
آپیدونباومیک زیر استخراج شده‌اند:

- نیروی سیال‌های در راستای 2 (نیروی لیفت)
- نیروی سیال‌های در راستای 3 (نیروی درک)
- نیروی سیال‌های حول محور 1 (نیروی رول)

این نتایج در جدول 2 به‌صورت خلاصه‌ای اورده شده‌اند. با توجه به نتایج حاضر شده،

