Experimental study of flow field on the blunt airfoil at very low Reynolds number

Reza Kamyab Matin1, Hojat Ghassemi1*, Abbas Ebrahimi2

1-Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
2-Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran.

* P.O.B. 163/16765 Tehran, Iran, h.ghassemi@iust.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 05 April 2015
Accepted 23 April 2015
Available Online 31 May 2015

Keywords: PIV method blunt airfoil very low Reynolds number wake instantaneous velocities

ABSTRACT

This article investigates experimental study of the flow field on a blunt airfoil to determine effects of changes in geometry of airfoils. For this purpose, PIV technique based on instantaneous flow structures is used in order to view two dimensional investigation of flow field around unmodified and blunt airfoil at different times. This study is performed on flows at very low Reynolds number flow (Reynolds number less than 4500). This flow regime is very similar to dominant condition on micro air vehicles (MAVs). In order to validate the method used in this study, flow field around cylinder is considered and subsequently, instantaneous and mean velocities fields, streamlines and mean vortices field around unmodified and blunt airfoils are obtained. The results show that there are prominent differences on the structure of wake around airfoils and sizes of separation region for blunt and simple airfoils. Meanwhile separation of the flow for both blunt and simple airfoils at this very low Reynolds number occurs at angle of attack 5 (at low angle of attack). Also, generation of vortex at wake region and their position and circulation at different times are discussed.

Keywords: PIV method blunt airfoil very low Reynolds number wake instantaneous velocities
رنولدز بی‌کم (کترنر از 10000) از اثر بررسی وسیع‌تری دانش‌آمیزگی بر جریان
هستند که به دلیل مقایسه کوتور جریان آرام در مقایسه با جریان اشته،
جدایی جریان در زاویه حمله باین رخ می‌دهد کار و کروی. [۱۴] مشتق‌گیری
که برای اندازه‌گیری بی‌کم سیاهرنگ یافت و به سرعت یافته، اگر دسترسی
مخفی برای جریان بهره‌مند در معامله با آزمایشگاه‌های
ایربادینی‌کم‌های هم‌اکنون در مقایسه میکروپره‌ایختیافت
ارب‌کی‌می شیکه از ارتباط در سیستم‌های نهادی با آزمایشگاه خراب
بررسی‌های بسیار در این نوع جریان با در ارتباط با اثرات مختلف
بومی بر آزادی برود و بررسی تولید کرده و نتیجه گرفته است
موج غیرآب‌انگیز غرببند رفت. می‌تواند.

یکی دیگر از اصول هندسی ایجاد بالاتر (به‌ضمن‌شدته) در ارتباط
ارتیقا این روش در قرار گرفتن تحت قرار گرفتن و تاثیر بررسی‌ها
است این روش. به‌طوری که ارتباط و تاثیر بررسی‌ها
موج غیرآب‌انگیز غرببند رفت. می‌تواند.

به مراجعه به مقاله ایجاد بالاتر با استفاده در ارتباط با قرار گرفتن
موج غیرآب‌انگیز غرببند رفت. می‌تواند.

موج غیرآب‌انگیز غرببند رفت. می‌تواند.
تغییر هندسی، از یک ایرفویل به همراه پلاکت در آن قرار استفاده شده است.

2- برای انجم آزمایش

در تکیهگاه و مناظر آنتن‌سازی، تعادلی ذره به سیال مورد نظر اضافه شده و مدل‌های انتقال انرژی می‌باشد. نتایج این مدل‌ها به بکارگیری سیال می‌باشد. در این مدل به دنبال ستون گرفتن از سیال در ناحیه ضرورت و رشد می‌باشد. نتایج انرژی به دنبال و پروانه‌ای که در نتایج داشته‌اند.

3- بررسی نتایج و بحث

در ادامه به بررسی خصوصیات جریان حل نکننده و دارای پالس پرداخته می‌شود. در شکل 5 نمایه از ایرفویل در مقطع آزمایش آورده شده است. این اکسیم پس از انجام تحلیل و بررسی، می‌باشد.

4- فرآیند فیلتر اندازه‌گیری

چهار کالپلیرسیون سرعت در تولید با این روش تفاوتی پیوسته بر داده‌های مورد نظر است.
دقت در شکل های خوبی می‌توان توزیع درات را به‌وزن زنده در ناحیه چیدمان مشاهده کرد. همچنین طبق تصویر شکل 5 از آنجایی که مخلوط اعمدور لزئر از بالا به پایین صفحه است، پس به ناحیه زیر ایرفوریل نور کافی نمی‌رسد و ناحیه سایر در برخی نقاط تنها دریافت نمی‌شود.

1- سرعت‌های لحظه‌ای
در شکل‌های 6 و 7 سرعت‌های بردارهای سرعت‌های لحظه‌ای، به‌ترتیب برای ایرفوریل‌های ساده و بارگذاری‌های زاویه 5 درجه، دیده می‌شود. سرعت‌های لحظه‌ای از 1 میلی‌سیکنده، ویژه در شرایط بارگذاری در دستگاه‌های کاملاً متفاوت هستند. در شکل 5، سطح ناحیه چیدمان زاویه 5 درجه در مرحله بارگذاری نسبت به شکل ناحیه چیدمان در مرحله زاویه 0 درجه در شکل 4، کاهشی مشاهده می‌شود.

2- سرعت و ضرایب انرژی
در شکل‌های 9 و 10 بردارهای سرعت‌های لحظه‌ای، به‌ترتیب برای ایرفوریل‌های ساده و بارگذاری‌های زاویه 5 درجه، دیده می‌شود. سرعت‌های لحظه‌ای از 1 میلی‌سیکنده، ویژه در شرایط بارگذاری در دستگاه‌های کاملاً متفاوت هستند. در شکل 5، سطح ناحیه چیدمان زاویه 5 درجه در مرحله بارگذاری نسبت به شکل ناحیه چیدمان در مرحله زاویه 0 درجه در شکل 4، کاهشی مشاهده می‌شود.

3- سرعت و ضرایب انرژی
در شکل‌های 9 و 10 بردارهای سرعت‌های لحظه‌ای، به‌ترتیب برای ایرفوریل‌های ساده و بارگذاری‌های زاویه 5 درجه، دیده می‌شود. سرعت‌های لحظه‌ای از 1 میلی‌سیکنده، ویژه در شرایط بارگذاری در دستگاه‌های کاملاً متفاوت هستند. در شکل 5، سطح ناحیه چیدمان زاویه 5 درجه در مرحله بارگذاری نسبت به شکل ناحیه چیدمان در مرحله زاویه 0 درجه در شکل 4، کاهشی مشاهده می‌شود.

4- سرعت و ضرایب انرژی
در شکل‌های 9 و 10 بردارهای سرعت‌های لحظه‌ای، به‌ترتیب برای ایرفوریل‌های ساده و بارگذاری‌های زاویه 5 درجه، دیده می‌شود. سرعت‌های لحظه‌ای از 1 میلی‌سیکنده، ویژه در شرایط بارگذاری در دستگاه‌های کاملاً متفاوت هستند. در شکل 5، سطح ناحیه چیدمان زاویه 5 درجه در مرحله بارگذاری نسبت به شکل ناحیه چیدمان در مرحله زاویه 0 درجه در شکل 4، کاهشی مشاهده می‌شود.

5- سرعت و ضرایب انرژی
در شکل‌های 9 و 10 بردارهای سرعت‌های لحظه‌ای، به‌ترتیب برای ایرفوریل‌های ساده و بارگذاری‌های زاویه 5 درجه، دیده می‌شود. سرعت‌های لحظه‌ای از 1 میلی‌سیکنده، ویژه در شرایط بارگذاری در دستگاه‌های کاملاً متفاوت هستند. در شکل 5، سطح ناحیه چیدمان زاویه 5 درجه در مرحله بارگذاری نسبت به شکل ناحیه چیدمان در مرحله زاویه 0 درجه در شکل 4، کاهشی مشاهده می‌شود.

1- Von Karman street
2- Kutta condition
حمه 5 درجه و در عدد روندی 4500 گرم شده است. فاقد آقای میدان
سرعت متوسط و میدان سرعت حفاظتی در این است که ساختارهای
گردابهای با مقدار کمی زمین از میانی دوره ناپاید شیشه گردابها حاصل
شد است. پشت ایرفوای ناحیه سرعت باینیه بهدیل نشکل ناحیه جدایش
شکل گرفته و به تدریج با فاصله گرفتن از ناحیه جدایش سرعت افزایش یافته
است. مطابق تصاویر شکل 9، ناحیه ویک برای ایرفوایی بلاتن نا حذف شده
کوچکتر از ایرفوای ساده است. هرچه ناحیه ویک کوچکتر شود، ضریب
درگ کهرب میشود و ضریب درگ کهرب افزایش نسبت لینت بر درگ را به
همراه دارد. البته گفتنی است که در این مطالعه سرعت جریان از بسیار کم
است (3 متر بر ثانیه)، طوری که با افزایش سرعت جریان آزاد (ایروندرهای
بالاتر) تفاوت در ابعاد ناحیه ویک برای ایرفوایی بلاتن نسبت به ایرفوایی ساده
محسوس نخواهد بود (25).

3- میدان و ویژگی‌های صوتی
در اثر جدا شدن جریان از چسب ناحیه‌ای با سرعت کم در شکم
به وجود می‌آید که در مرز میان این ناحیه کم سرعت و جریان آزاد گردابان

![شکل 7 بردارهای سرعت‌های حفاظتی جریان در زاویه حمله 5 درجه برای ایرفوایی بلاتن](image1)

سرعت برگزی ویک می‌شود و وجود این گرداب سرعت سپر ایجاد
ناحیه‌ای با تمرکز ویژگی‌های بالا می‌شود. با متوسط‌گیری از میدان و ویژگی‌های
صحیح در ذهنی دوره ناپایی فکر کنید رزیش گردابها، میدان و ویژگی‌های
متوسط به دست می‌آید و ویژگی‌های مزدحه بر صفحه از رابطه (2) به دست
می‌آید.

\[\omega = \frac{\Delta v}{\Delta y} \]

(2)

![شکل 10 کانتر و ویژگی‌های ایفایی بلاتن در دارایی حمله 4500 درجه و روندی 4500 را نشان می‌دهد. همانطور که از شکل
10 مشخص است، توزیع ویژگی‌های در آزار ناحیه جدایش پشت ایرفوای
فرشته است و با فاصله گرفتن از ایرفوایی از فشردهی آن کاسته می‌شود در
ハウス‌هایی در از برخی بازیابی ویژگی‌های مالکین و محل تمرکز ویژگی‌های ایفایی که
در لایه برخی بالایی مقدار ویژگی‌های منفی و در لایه برخی بالایی مقدار
ویژگی‌های مثبت است براساس تصاویر شکل 10 تمرکز ویژگی‌ها در هر دو
لایه برخی بالایی و بالینی، برای ایرفوایی دارای بلاتن پیشین از ایرفوایی ساده
است در حقیقت با ایجاد بلاتن یک لایه جت هوا در هر دو سطح بالا و بالین
ایرفوایی تولید می‌شود که متحرک افزایش مقادیر ویژگی‌های در این نواحی
می‌شود.

![شکل 6 بردارهای سرعت‌های حفاظتی جریان در زاویه حمله 5 درجه برای ایرفوایی ساده](image2)
شکل ۹ بردارهای سرعت متوسط جریان در تابه حمله ۵ درجه برای ایرفون ساده (پایین) و ایرفون بلات (پایین)

پ - ایرفون ساده در تابه حمله ۵ درجه

شکل ۸ خطا متوسط جریان

همانطور که در بخش پیشین بیان شد، بلات در ایرفون موجب تولید ناحیه فون کارمن شده است که دو گردابه در آن شکل می‌گیرد. در واقع افزایش ورایتی در ایرفون بلات نسبت به ایرفون ساده، منجر به تشکیل ناحیه فون کارمن شده است. ناحیه فون کارمن شده است. همچنین برای افزایش تولید، برای هر دو ایرفون تمرکز ورایتی در ناحیه برطبی بالایی (مقاوم منفی) به‌صورت به‌وسیله پایینی است به‌صورت مطالب بیانشده می‌توان اندازه‌سازی افزایش ورایتی در ایرفون بلات نسبت به ایرفون ساده، منجر به تولید ضریب لفت بیشتری

شکل ۷ ایرفون بلات در تابه حمله ۵ درجه

۴- نتیجه‌گیری

در این پژوهش به بررسی تجربی جریان حول ایرفون بلات، براساس ساختارهای لحظه‌ای جریان برداشت. به‌ویژه آزمایش‌های از روی انتخاب و بررسی‌های سرعت لحظه‌ای و پیش‌بینی با مقطع ناکا ۴۰۲۴ انتخاب و بررسی‌های سرعت لحظه‌ای و متوسط جریان، خطوط جریان و میدان ورایتی متوسط در رنگ‌داند ۴۰۵۰۰
و در تولیت یاد سرعت پایین اجاق شد. نشان داده شد. دو گردابی یکی در تندریکی لایه برنش لایی و در جهت ساکتگر و یکی در تندریکی لایه برنش پایینی و در جهت پایاناتگر و بصورت متقارن شکل می‌گیرد در جهت جریان نا باوری حركت می‌کند و این سیستم دوباره تکرار می‌شود.

جداشیت جریان در ایرفویل ساده 2004 و ایرفویل دارای بلوط در رنولدزهای بیشتر یکی در زاویه حمله 5 درجه به ده کم در تغییر اسال است با معادل میانی میکرو بلوط ایرفویل روزی برای اسال است.

همچنین مشاهده شد ابعاد ناحیه جداشیت جریان در ایرفویل دارای کوچکتر از ایرفویل ساده یکی این به معادل تولید نیروی در گردا بهره‌مند است.

ابروبیل دارای بلوط در در و زاویه حمله 5 و ۷ درجه، دارای در گردا بهره‌مند و یک است.

مقادیر وریتیویی در ایرفویل بلوط به ایرفویل ساده افزایش پیدا کرده در ناحیه ایده ایرفویل دارای به ایرفویل بلوط به ایرفویل ساده قابل پیش بینی است.

5- فهرست علامت

6- مراجع

