Volume 20, Issue 10 (October 2020)                   Modares Mechanical Engineering 2020, 20(10): 2445-2460 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirzababaie Mostofi T, Sayah Badkhor M, Babaei H. Experimental Investigation into the Dynamic Response of Double-Layered Quadrangular Metallic Plates Subjected to Localized Impulsive Loading. Modares Mechanical Engineering 2020; 20 (10) :2445-2460
URL: http://mme.modares.ac.ir/article-15-44473-en.html
1- Mechanical Engineering Department, Electrical, Computer and Mechanical Engineering Faculty, University of Eyvanekey, Eyvanekey, Iran
2- Mechanical Engineering Department, Mechanical Engineering Faculty, University of Guilan, Rasht, Iran , ghbabaei@guilan.ac.ir
Abstract:   (1744 Views)
One of the main objectives of impact mechanics is the design of a structure resistant to explosion by introducing a structure with a special design pattern while maintaining its lightweight conditions. In this study, the plastic deformation and failure pattern of quadrangular metallic plates under localized impulsive loading were investigated due to the lack of experimental, analytical, and numerical results in the field of deformation of multilayer structures under impulsive loading. In this series of experiments, 26 double-layered metallic plates with different layering arrangements of steel-steel and steel-aluminum in different thicknesses were fabricated and designed. To apply the localized impulsive load, a ballistic pendulum system was used without using standoff distance blast tubes. A thick layer of polyester foam was used to prevent explosive debris. Steel plates in different thicknesses of 1, 2, and 2.5mm, and aluminum plates in different thicknesses of 1 and 2mm in 5 different layering configurations were used. In the experimental study, parameters such as impulse, central permanent deflection, and longitudinal strains in x and y directions were measured. The results showed that the use of aluminum plate as a backing layer reduces the explosive performance of the double-layered mixed configurations of steel-aluminum plates under localized impulsive loading.
Full-Text [PDF 1273 kb]   (2078 Downloads)    
Article Type: Original Research | Subject: Impact Mechanics
Received: 2020/07/15 | Accepted: 2020/08/10 | Published: 2020/10/21

References
1. Jamali A, Babaei H, Nariman-Zadeh N, Ashraf Talesh S, Mirzababaie Mostofi T. Multi-objective optimum design of ANFIS for modelling and prediction of deformation of thin plates subjected to hydrodynamic impact loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(3):368-378. [Link] [DOI:10.1177/1464420716660332]
2. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Study on the response of circular thin plate under low velocity impact. Geomechanics and Engineering. 2015;9(2):207-218. [Link] [DOI:10.12989/gae.2015.9.2.207]
3. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Saeidinejad A. Experimental investigation and dimensionless analysis of forming of rectangular plates subjected to hydrodynamic loading. Journal of Applied Mechanics and Technical Physics. 2017;58(1):139-147. [Link] [DOI:10.1134/S0021894417010151]
4. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and theoretical study of large deformation of rectangular plates subjected to water hammer shock loading. Proceedings of the Institution of Mechanical Engineers, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017;231(3):490-496. [Link] [DOI:10.1177/0954408915611055]
5. Jones N. Dynamic inelastic response of strain rate sensitive ductile plates due to large impact, dynamic pressure and explosive loadings. International Journal of Impact Engineering. 2014;74:3-15. [Link] [DOI:10.1016/j.ijimpeng.2013.05.003]
6. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Theoretical analysis on the effect of uniform and localized impulsive loading on the dynamic plastic behaviour of fully clamped thin quadrangular plates. Thin-Walled Structures. 2016;109:367-376. [Link] [DOI:10.1016/j.tws.2016.10.009]
7. Mirzababaie Mostofi T, Golbaf A, Mahmoudi A, Alitavoli M, Babaei H. Closed-form analytical analysis on the effect of coupled membrane and bending strains on the dynamic plastic behaviour of fully clamped thin quadrangular plates due to uniform and localized impulsive loading. Thin-Walled Structures. 2018;123:48-56. [Link] [DOI:10.1016/j.tws.2017.11.010]
8. Yuen SCK, Nurick GN, Langdon GS, Iyer Y. Deformation of thin plates subjected to impulsive load: Part III-an update 25 years on. International Journal of Impact Engineering. 2017;107:108-117. [Link] [DOI:10.1016/j.ijimpeng.2016.06.010]
9. Spranghers K, Vasilakos I, Lecompte D, Sol H, Vantomme J. Numerical simulation and experimental validation of the dynamic response of aluminum plates under free air explosions. International Journal of Impact Engineering. 2013;54:83-95. [Link] [DOI:10.1016/j.ijimpeng.2012.10.014]
10. Mehreganian N, Louca LA, Langdon GS, Curry RJ, Abdul-Karim N. The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques. International Journal of Impact Engineering. 2018;115:81-93. [Link] [DOI:10.1016/j.ijimpeng.2018.01.010]
11. Rezasefat M, Mirzababaie Mostofi T, Babaei H, Ziya-Shamami M, Alitavoli M. Dynamic plastic response of double-layered circular metallic plates due to localized impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2019;233(7):1449-1471 [Link] [DOI:10.1177/1464420718760640]
12. Rezasefat M, Mirzababaie Mostofi T, Ozbakkaloglu T. Repeated localized impulsive loading on monolithic and multi-layered metallic plates. Thin-Walled Structures. 2019;144:106332. [Link] [DOI:10.1016/j.tws.2019.106332]
13. Henchie TF, Yuen SCK, Nurick GN, Ranwaha N, Balden VH. The response of circular plates to repeated uniform blast loads: An experimental and numerical study. International Journal of Impact Engineering. 2014;74:36-45. [Link] [DOI:10.1016/j.ijimpeng.2014.02.021]
14. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Lu G, Ruan D. Large transverse deformation of double-layered rectangular plates subjected to gas mixture detonation load. International Journal of Impact Engineering. 2019;125:93-106. [Link] [DOI:10.1016/j.ijimpeng.2018.11.005]
15. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental and analytical investigation into large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2016;107:257-265. [Link] [DOI:10.1016/j.tws.2016.06.013]
16. Babaei H, Mirzababaie Mostofi T, Alitavoli M, Darvizeh A. Empirical modelling for prediction of large deformation of clamped circular plates in gas detonation forming process. Experimental Techniques. 2016;40(6):1485-1494. [Link] [DOI:10.1007/s40799-016-0063-3]
17. Babaei H, Mirzababaie Mostofi T, Armoudli E. On dimensionless numbers for the dynamic plastic response of quadrangular mild steel plates subjected to localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2017;231(5):939-950. [Link] [DOI:10.1177/0954408916650713]
18. Mirzababaie Mostofi T, Babaei H, Alitavoli M. The influence of gas mixture detonation loads on large plastic deformation of thin quadrangular plates: Experimental investigation and empirical modelling. Thin-Walled Structures. 2017;118:1-11. [Link] [DOI:10.1016/j.tws.2017.04.031]
19. Mirzababaie Mostofi T, Babaei H, Alitavoli M, Hosseinzadeh S. On dimensionless numbers for predicting large ductile transverse deformation of monolithic and multi-layered metallic square targets struck normally by rigid spherical projectile. Thin-Walled Structures. 2017;112:118-124. [Link] [DOI:10.1016/j.tws.2016.12.014]
20. Babaei H, Mirzababaie Mostofi T. New dimensionless numbers for deformation of circular mild steel plates with large strains as a result of localized and uniform impulsive loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(2):231-245. [Link] [DOI:10.1177/1464420716654195]
21. Babaei H, Mirzababaie Mostofi T. Modeling and prediction of fatigue life in composite materials by using singular value decomposition method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2020;234(2):246-254. [Link] [DOI:10.1177/1464420716660875]
22. Babaei H, Mirzababaie Mostofi T, Namdari-Khalilabad M, Alitavoli M, Mohammadi K. Gas mixture detonation method, a novel processing technique for metal powder compaction: Experimental investigation and empirical modeling. Powder Technology. 2017;315:171-181. [Link] [DOI:10.1016/j.powtec.2017.04.006]
23. Jones N, Uran TO, Tekin SA. The dynamic plastic behavior of fully clamped rectangular plates. International Journal of Solids and Structures. 1970;6(12):1499-1512. [Link] [DOI:10.1016/0020-7683(70)90060-0]
24. Jones N, Baeder RA. An experimental study of the dynamic plastic behavior of rectangular plates. Symposium on Plastic Analysis of Structures, 1 September 1972, Iasi, Romania. Boston: Massachusetts Institute of Technology; 1972. [Link]
25. Nurick GN, Martin JB. Deformation of thin plates subjected to impulsive loading-a review: Part i: Theoretical considerations. International Journal of Impact Engineering. 1989;8(2):159-170. [Link] [DOI:10.1016/0734-743X(89)90014-6]
26. Nurick GN, Martin JB. Deformation of thin plates subjected to impulsive loading-a review part II: Experimental studies. International Journal of Impact Engineering. 1989;8(2):171-186. [Link] [DOI:10.1016/0734-743X(89)90015-8]
27. Nurick GN, Pearce HT, Martin JB. Predictions of transverse deflections and in-plane strains in impulsively loaded thin plates. International Journal of Mechanical Sciences. 1987;29(6):435-442. [Link] [DOI:10.1016/0020-7403(87)90004-X]
28. Rudrapatna NS, Vaziri R, Olson MD. Deformation and failure of blast-loaded square plates. International Journal of Impact Engineering. 1999;22(4):449-467. [Link] [DOI:10.1016/S0734-743X(98)00046-3]
29. Jacob N, Yuen SCK, Nurick GN, Bonorchis D, Desai SA, Tait D. Scaling aspects of quadrangular plates subjected to localised blast loads-experiments and predictions. International Journal of Impact Engineering. 2004;30(8-9):1179-1208. [Link] [DOI:10.1016/j.ijimpeng.2004.03.012]
30. Park BW, Cho SR. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosion loadings. International Journal of Impact Engineering. 2006;32(10):1721-1736. [Link] [DOI:10.1016/j.ijimpeng.2005.01.005]
31. Sharma AK, Rout DK. Finite element analysis of sheet hydromechanical forming of circular cup. Journal of Materials Processing Technology. 2009;209(3):1445-1453. [Link] [DOI:10.1016/j.jmatprotec.2008.03.070]
32. Babaei H, Mirzababaie Mostofi T, Alitavoli M. Experimental investigation and analytical modelling for forming of circular-clamped plates by using gases mixture detonation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020;234(5):1102-1111. [Link] [DOI:10.1177/0954406215614336]
33. Babaei H, Mirzababaie Mostofi T, Sadraei SH. Effect of gas detonation on response of circular plate-experimental and theoretical. Structural Engineering and Mechanics. 2015;56(4):535-548. [Link] [DOI:10.12989/sem.2015.56.4.535]
34. Mirzababaie Mostofi T, Babaei H, Alitavoli M. Experimental and theoretical study on large ductile transverse deformations of rectangular plates subjected to shock load due to gas mixture detonation. Strain. 2017;53(4):12235. [Link] [DOI:10.1111/str.12235]
35. Sayah Badkhor M, Hasanzadeh M, Mirzababaie Mostofi T. Numerical investigation and optimization on performance of sandwich panel structures with honeycomb core subjected to blast loading by response surface methodology. Amirkabir Journal of Mechanical Engineering. 2019;52(10):121-130. [Persian] [Link]
36. Sayah Badkhor M, Mirzababaie mostofi T, Babaei H. Low-velocity impact response of plate with different geometries under hydrodynamic load: Experimental investigation and process optimization by response surface methodology. Modares Mechanical Engineering. 2020;20(4):807-818. [Persian] [Link]
37. Sayah Badkhor M, Mirzababaie Mostofi T, Babaei H. Dynamic response of metal powder subjected to low-velocity impact loading: Experimental investigation and optimization using response surface methodology. Modares Mechanical Engineering. 2020;20(4):863-876. [Persian] [Link]
38. Mirzababaie Mostofi T, Sayah Badkhor M. Experimental study and optimization of dynamic response of polymer-coated metal plates subjected to impact loading using response surface methodology. Modares Mechanical Engineering. 2020;20(4):1011-1023. [Persian] [Link]
39. Mirzababaie Mostofi T, Sayah Badkhor M, Babaei H. High-velocity compaction of aluminum powder by gas detonation forming technique. International Journal of Advanced Design and Manufacturing Technology. 2020;13(1):17-29. [Link]
40. Mirzababaie Mostofi T, Sayah-Badkhor M, Rezasefat M, Ozbakkaloglu T, Babaei H. Gas mixture detonation load on polyurea-coated aluminum plates. Thin-Walled Structures. 2020;155:106851. [Link] [DOI:10.1016/j.tws.2020.106851]
41. Flores-Johnson EA, Saleh M, Edwards L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. International Journal of Impact Engineering. 2011;38(12):1022-1032. [Link] [DOI:10.1016/j.ijimpeng.2011.08.005]
42. Deng Y, Zhang W, Cao Z. Experimental investigation on the ballistic resistance of monolithic and multi-layered plates against hemispherical-nosed projectiles impact. Materials & Design. 2012;41:266-281. [Link] [DOI:10.1016/j.matdes.2012.05.021]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.