Optimal design of guidance algorithm for the reconfiguration phase of the satellite constellation

Mahdi Fakoor1*, Majid Bakhtiari2, Mahshid Soleymani1

1- Department of New Sciences & Technologies, University of Tehran, Tehran, Iran.
2- Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
* P.O.B. 1393957131 Tehran, Iran, mfakoor@ut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 02 November 2015
Accepted 22 December 2015
Available Online 26 January 2016

Keywords:
Satellite Constellation
Reconfiguration Phase
Lambert Targeting Theorem
Hybrid PSO/GA Optimization Algorithm

ABSTRACT

A novel approach is presented for the reconfiguration of satellite constellations based on Lambert’s theorem. The reconfiguration problem in this article, is considered with the constraint of overall fuel cost minimization. Hence, orbital maneuvers required for the operation of reconfiguration are designed in such a way that, transferring globally the satellites to the desired configuration of constellation will be possible at minimal cost. Also, the introduced method of orbital transfer for implementing the reconfiguration phase of satellite constellation has no limitation on the shape and orientation of initial and target orbits such as: co-planarity, coaxiality, circularity and/or the existence of a common point. Moreover, a method is offered for modeling the cost function of reconfiguration problem in which the two important tasks of optimal orbital transfer of satellites to the target configuration of constellation and optimal assignment of each satellite to a specific terminal position or final orbit will be done in one single step. For this purpose and in order to achieve globally optimal solution of the reconfiguration problem of constellation the hybrid PSO/GA is used. Finally, two different scenarios of reconfiguration of satellite constellation will be modeled once by the presented approach and once by considering determined positions of flight and deployment for the satellites. The obtained results indicate the superiority of the idea presented in this article.

Please cite this article using:
M. Fakoor, M. Bakhtiari, M. Soleymani, Optimal design of guidance algorithm for the reconfiguration phase of the satellite constellation, Modares Mechanical Engineering, Vol. 16, No. 2, pp. 31-40, 2016 (in Persian)
2- Geosynchronous Transfer Orbit (GTO)
3- Geostationary Earth Orbit (GEO)
\[
\sin \left( \frac{\beta_e}{2} \right) = \sqrt{\frac{S - c}{2a}}
\]

\( S \) is the total energy of the system, \( c \) is the speed of light, and \( a \) is a constant related to the problem's geometry.

1. Semi-major Axis
2. True Anomaly
3. Eccentricity

\[
\cos(\alpha) = \frac{r_2 - r_1}{r_2 r_1}
\]

\[
c = \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos(\alpha)}
\]

\[
S = r_1 + r_2 + c
\]

\[
\sin \left( \frac{\beta_e}{2} \right) = \sqrt{\frac{S - c}{2a}}
\]

Fig. 1 Geometry of the Lambert's problem

\[a_{min} = \frac{1}{2} \left( r_1 + r_2 + c \right)
\]

\[
\Delta t = F(a, r_1, r_2, c, \alpha)
\]

\[
\Delta t = \left( \frac{a_2 - a_1}{a_2 + a_1} \right) \left( \beta_e - \sin(\beta_e) \right)
\]

\[
\sin \left( \frac{\beta_e}{2} \right) = \sqrt{\frac{S - c}{2a}}
\]
شکل 2 انتقال مداری برای پایانی سالانه شروع و انتهایه

3- تکنیک هسته‌سازی اهداف دراز و هزینه مربوط برای کاربرای رگباری و با محدودیتی در طی تحقیقات گفته شده از خود نشان داده شد. از این ترتیب این دو کامپیوتر به منظور مستندی به کامپیوتر ارائه داده‌های که در پرگونه‌بندی ناپایدار قرار دارد. طبقه‌بندی شکل 3 از درستی از این کامپیوتر هسته‌سازی مانند دستگاه‌های با گذرگردی نمایی و هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

4- مدل‌های غیرآرای درون‌نشان با انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی یک راه حل کامپیوتری از طرف دیگر از صورتی که خود را از دو ترتیب و سطح استفاده می‌کند. هزینه خاص کاربری این دستگاه نمایش داده می‌گردد. 

5- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

6- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

7- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

8- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

9- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

10- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

11- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

12- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

13- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

14- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

15- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

16- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

17- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

18- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

19- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

20- هزینه خاص کاربری این دستگاه نمایش داده می‌گردد.

**مقدمه:** تحقیق ارزیابی مدل‌های غیرآرای درون‌نشانی و استفاده از آن‌ها در انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی با استفاده از روش هزینه‌ای و هزینه‌ای بی‌بندی و به این ترتیب، مدل‌های غیرآرای درون‌نشانی و استفاده از آن‌ها در انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی استفاده می‌گردد.

**بهینه‌سازی اهداف دراز:** هزینه‌ای و هزینه‌ای بی‌بندی و به این ترتیب، مدل‌های غیرآرای درون‌نشانی و استفاده از آن‌ها در انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی استفاده می‌گردد.

**نتایج:** هزینه‌ای و هزینه‌ای بی‌بندی و به این ترتیب، مدل‌های غیرآرای درون‌نشانی و استفاده از آن‌ها در انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی استفاده می‌گردد.

**ملاحظه:** هزینه‌ای و هزینه‌ای بی‌بندی و به این ترتیب، مدل‌های غیرآرای درون‌نشانی و استفاده از آن‌ها در انتقال از اهداف دراز و هزینه مربوط به درون‌نشانی استفاده می‌گردد.

**شکل 2** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 3** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 4** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 5** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 6** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 7** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 8** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 9** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 10** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 11** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 12** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 13** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 14** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 15** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 16** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 17** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 18** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 19** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 20** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 21** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 22** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 23** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 24** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 25** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 26** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 27** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 28** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 29** انتقال مداری برای پایانی سالانه شروع و انتهایه

**شکل 30** انتقال مداری برای پایانی سالانه شروع و انتهایه
روی گوی مداری نهایی، اخلاق و ماهواره دقیقه مالومات و مشخصاتی از ماهواره جستجو شود. حالاتی مختلف برای اجرای عملیات تغییر آرایش به وجود می‌آید که از آن مطالعه به منظور بررسی‌های قبیل کمیته‌های هزینه‌های ناشی از تغییر آرایش که در مدار حداکثر مورد نظر قرار داده می‌شود. در این مقاله نمودار هزینه به کمیته‌های متغیر

iii. Merge population
iv. Select the top N individuals
v. Update personal best and global best

1. Initialization:
   a. Initialize a population of N particles with random positions and velocities
   b. Use the cost function to evaluate the fitness of each particle of the population
   c. Set the current fitness value of each particle as its personal best
   d. Find the best particle among all particles of the current population and set it as global best

2. For iteration = 1 to the maximum number of iterations:
   a. For PSO iteration = 1 to the maximum number of PSO iterations:
      i. Update velocity and position of all population
      ii. Calculate the cost function value of all population
      iii. Update personal best and global best
   b. For GA iteration = 1 to the maximum number of GA iterations:
      i. Apply crossover and calculate the cost function value of new individuals
      ii. Apply mutation and calculate the cost function value of new individuals
      iii. Merge population
      iv. Select the top N individuals
      v. Update personal best and global best

Fig. 3 Pseudo-code for the hybrid PSO/GA algorithm [20]
Table 1

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Final position of the satellite on the initial orbit</th>
<th>Initial position of the satellite on the initial orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Earth A, Earth B, Earth C</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A, B, C</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>C, A, B</td>
</tr>
</tbody>
</table>

Fig. 4 Symbolic position of the satellites on the initial orbit.

Fig. 5 Symbolic position of the satellites on the target orbit.

Final orbit Earth A, Earth B, Earth C.

Initial orbit Earth A, Earth B, Earth C.
**Equation:**

\[ X = [\theta_1 \ \theta_2 \ \Delta t_{\text{transfer}}] \]

**Globally Optimal Orbital Transfer**

**Table 3 Verification Results**

<table>
<thead>
<tr>
<th>Transfer Orbit</th>
<th>Frame</th>
<th>Header</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.503</td>
<td>km/s</td>
<td>0.499</td>
<td>0.503</td>
</tr>
<tr>
<td>0.219</td>
<td>km/s</td>
<td>0.223</td>
<td>0.219</td>
</tr>
<tr>
<td>0.722</td>
<td>km/s</td>
<td>0.722</td>
<td>0.722</td>
</tr>
</tbody>
</table>

**Diagram:**

- Fig. 6 View of globally optimal orbital transfer between two elliptic coplanar orbits with arbitrary axes.

**Text:**

...and 16th. 2020
جدول 6 مقادیر بهینه متغیرهای طراحی برای هر دو مورد در نظر گرفته شده

<table>
<thead>
<tr>
<th>مدل</th>
<th>$\theta_1$ (deg)</th>
<th>$\theta_1$ (deg)</th>
<th>$\theta_1$ (deg)</th>
<th>$\theta_1$ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>54.85</td>
<td>54.85</td>
<td>54.85</td>
<td>54.85</td>
</tr>
<tr>
<td>مدل 2</td>
<td>54.85</td>
<td>54.85</td>
<td>54.85</td>
<td>54.85</td>
</tr>
</tbody>
</table>

جدول 7 مقادیر بهینه متغیرهای طراحی برای هر دو مورد در نظر گرفته شده

<table>
<thead>
<tr>
<th>$\Delta_{\text{transfer}}$ (s)</th>
<th>$\theta_1$ (deg)</th>
<th>$\theta_2$ (deg)</th>
<th>$\theta_3$ (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>6340.9</td>
<td>268.59</td>
<td>134.998</td>
</tr>
<tr>
<td>مدل 2</td>
<td>5369.3</td>
<td>160.179</td>
<td>66.564</td>
</tr>
</tbody>
</table>

جدول 8 مقادیر بهینه متغیرهای ساختاری در مدل سیستم استقرار روی مدار و نهایی برای هر دو مورد در نظر گرفته شده

<table>
<thead>
<tr>
<th>$\Delta_{\text{trans}}$ (s)</th>
<th>$\Delta_{\text{trans}}$ (s)</th>
<th>$\Delta_{\text{trans}}$ (s)</th>
<th>$\Delta_{\text{trans}}$ (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>1.636</td>
<td>0.923</td>
<td>1.302</td>
</tr>
<tr>
<td>مدل 2</td>
<td>1.087</td>
<td>0.999</td>
<td>1.371</td>
</tr>
</tbody>
</table>

جدول 9 مقادیر بهینه سراتر، نتایج هنری در حالات مکانیکی برای هر دو مورد در نظر گرفته شده

<table>
<thead>
<tr>
<th>$f$ (km/s)</th>
<th>$f$ (km/s)</th>
<th>$f$ (km/s)</th>
<th>$f$ (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>27.4</td>
<td>9.22</td>
<td>6.906</td>
</tr>
<tr>
<td>مدل 2</td>
<td>32.8</td>
<td>9.47</td>
<td>6.3603</td>
</tr>
</tbody>
</table>

جدول 10 حالت بهینه اجرا عملیات تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 11 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 12 جدول ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 13 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 14 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 15 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 16 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 17 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>

جدول 18 جدول بهینه سیستم تغییر آرتیس ماهواره‌ای

<table>
<thead>
<tr>
<th>$b_2$</th>
<th>$b_3$</th>
<th>$a_2$</th>
<th>$a_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>مدل 1</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
<tr>
<td>مدل 2</td>
<td>$-b_1$</td>
<td>$-a_1$</td>
<td>$-a_1$</td>
</tr>
</tbody>
</table>
12.13 و 14 جمعی اورش شده است. همچنین نسبت دو و سه از تغییرات های متغیرهای سراسی در همان نسبت دو و سه از تغییرات های متغیرهای سراسی می‌گردد. این حالت، اگر با واقعیت نسبت دو و سه از تغییرات های متغیرهای سراسی بسته شود، به طور کلی نتایج منجر و در حدود 15 گزارش

شده است.

طقیق نتایج مندرج در جدول 12 با رابطه کل مالوریت برای یک تغییر در ۳۹۷۵.۸ نسبت می‌باشد. در جدول 14 مقادیر بهره‌سازی سراسی تغییر هزینه در واقع مبنا یک مورد مقایسه فراخورت است. مثالی

می‌شود حالت مقایسه‌ای برای واقعیت پرواز و استقرار بهینه و

بهره‌سازی سراسی در نهایی، هر یک از موارد مورد تحلیل (***مادرهای انتقال بهینه*** این نهایی.)

جدول 11: تغییرات بهینه در محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 12: مقادیر بهینه متغیرهای طراحی

جدول 13: مقادیر بهینه در محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 14: مقادیر بهینه سراسی تغییر هزینه در واقع مبنا یک مورد مقایسه فراخورت است. مثالی

جدول 15: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 16: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 17: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 18: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 19: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 20: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)

جدول 21: ارتباط محورهای در ارتفاع برای دو مورد در نظر گرفته شده (* ***مادرهای انتقال بهینه*** این نهایی.)


Fig. 8a The three dimensional view

Fig. 8b The two dimensional view