کنترل پیشین غیرخطی ربات شبکه آزادی سکوی استوارت

مجتهد قریانی1، سیدجمال حسینی ثاني2

1 - دانشگاه آزاد اسلامی، مهندسی مکانیک، دانشگاه فردوشی مشهد
2 - استادیار، مهندسی برق، دانشگاه فردوشی مشهد

k.hosseini@um.ac.ir

اطلاعات مقاله

نام منجری: مهندسی مکانیک مشهد

چکیده

در این مقاله کنترل پیشین غیرخطی برای ربات موازی شبکه آزادی استوارت آراپاهده است کنترل پیشین، سبب کنترل بهبود راحتی ربات در برابر محدودیت‌های مصرف انرژی کنترل کننده شبکه آزادی استوارت شده است. این ربات برای تأمین و ثبت اطلاعات لازم در طی آزمون‌های مختلف کاربردی استوارت به تصویر گرفته شده است. هدف اصلی این کنترل پیشین غیرخطی، بهبود کنترل شبکه آزادی استوارت برای بروز مشکلات و ضرایب غیرخطی است. در این مقاله کنترل پیشین غیرخطی ربات شبکه آزادی استوارت بیانی به صورت انجام داده شده است.

Nonlinear model predictive control of Stewart platform 6 dof

Mojtaba Ghorbani, Seyed Kamal Hosseini Sani

Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

* P.O.B. 9177948974 Mashhad, Iran, k.hosseini@um.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 09 August 2015
Accepted 06 November 2015
Available Online 15 December 2015

Keywords:
Stewart platform
Nonlinear model predictive control
uncertain system
robot manipulator
Lyapunov stability

ABSTRACT

This paper presents a nonlinear predictive approach for Stewart platform (6 degrees of freedom). The optimal control is computed directly from the minimization of receding horizon cost function with offline optimization. The main purpose of this research is to design the predictive controller for Stewart platform. In this study, the kinematics and dynamics of Stewart robot are introduced, considering the dynamics of actuators. Following the introduction of nonlinear model predictive control will be discussed and according to robot dynamics, controller will be designed. In addition, given the various uncertainties, robot dynamic equation could be rewritten. The controller is designed according to these uncertainties and then stability control is confirmed using Lyapunov theory. Due to the limited engine power and the output torque electric drive in practice, the proposed controller manages Stewart platform in such a way that it could track the desired trajectory well. To review the proposed method at the end of the study, Stewart platform is simulated and the control method proposed in this paper was compared with discussed computed torque control (CTC) method, sliding mode control and Proportional-Integral-Differentiation (PID) controller.

1 مقدمه

سکوی استوارت1، یک ربات موزایی با 6 درجه آزادی است که نخستین بار نویسنده استوارت [1] در سال 1965 معرفی گردید. این ربات همانطور که در شکل 1 نشان داده شده است، مشکلی از دو صفحه پیوسته به نظامی با توجه به آنها با استفاده از لینک‌های مبتنی بر روش محرکه‌های هیدروپلسیک، سیمپلکسیک و یا اتوماتیک در کنار یک نیرو در دو صفحه 2 و 3 دارای باریکتی خاصی داشته باشند. این باورها بر این مبنایی مفصل و بدون سیستم تبادل مکانیکی و فیزیکی بزرگ کنترل ربات در محیطی متشکل از عناصر مختلف از دست خواهد رفت.

1- Stewart platform
2- plate
3- link
4- Universal joint

Please cite this article using:
2. Proportional differential (PD)

Fig. 1 The Stewart platform

![Diagram of the Stewart platform](image-url)
Fig. 2 The Simplified structure Stewart platform

شکل 2 ساده‌ترین ساختار پلت فریستو
شکل ۵ هیدرولیک الکترومکانیکی

سیستم با سیستم حرکت کننده است، دیمانیکی بخش الکترومکانیکی در مقایسه با بخش مکانیکی قبل صرف‌نظر کردن این دست و سه دیمانیکی بخش الکترومکانیکی در نظر گرفته می‌شود. این فرض می‌تواند کاربردی توجهی با جریان موتور فرض نمود. رابطه حرکت محرک الکترومکانیکی به‌صورت (7) خواهد بود.

\[F = K_a T_m - D_a L - B_d L \]

(7)

که در رابطه (7) \(T_m \) مانند انرژی محرک، \(K_a \) مانند ضریب میزان \(D_a \) مانند ضریب میزان انتقال بین این دو، \(B_d \) مانند ضریب میزان انتقال و \(K \) مانند ضریب میزان انتقال بین این دو می‌باشد. این رابطه به‌صورت (8) می‌باشد.

\[L = I_q q \]

(8)

با ترکیب روابط (7) و (8) نتیجه (9) حاصل می‌شود.

\[F = K_a T_m - D_a I_q q - D_d I_q q - B_d I_q q \]

(9)

و با ترکیب معادلات (6) و (9) دیمانیکی کامل ربات در مختصات دکتری به دست می‌آید.

\[D(q) \ddot{q} + C(q, \dot{q}) \dot{q} + G(q) = u \]

(10)

که در رابطه (10) \(T_m \) به‌صورت \(u \) و \(\theta \) می‌باشند. کارکرد محرک الکترومکانیکی دیمانیکی به‌صورت (11) در رابطه (11) نتیجه می‌شود.

\[f = \int_{t_1}^{t_2} \left[q(t) \right] \left(\dot{q}(t) + r(t) \right) \text{dr} = \int_{t_1}^{t_2} \left[q(t) \right] \left(\ddot{q}(t) + \dddot{q}(t) \right) \text{dr} \]

(11)

با استفاده از معادلات (11) در این شرایط، می‌توان نتیجه باید رابطه را به‌صورت رابطه (11) در نظر گرفت.

شکل ۳ انالیز دیمانیکی متحرک ربات

شکل ۴ انالیز دیمانیکی کل ربات

شکل ۶-۱ دیمانیکی محرک‌های ربات

با پیشرفت و توسعه سیستم مهندسی به‌ویژه سیستم محرک‌های الکترومکانیکی، امرهای استحکام‌اندازی این محرک‌ها و بهبود کیفیت آنها در تولید محرک‌های مختلف افزایش یافته و در بسیاری از موارد یک تکنیک محرک‌های الکترومکانیکی روشی مشابه که مشابهی با کاربرد محرک‌های الکترومکانیکی سیستم در نظر گرفته شده است.
در این پژوهش نامی‌ها به صورت آزاده به مقدار منفی به

درون خطای مدل سازی در نظر گرفته می‌شود.

\[
D(t) = D_0(t) + AD \\
G(q,q) = G_0(q) + AG \\
B(t) = b(t)
\]

(21)

\[
D_0(t) + AD} \right) + (C_0(q,q) + AC) \left(G_0(q) + AG \right) + AG + F(t) = u + b(t)
\]

(22)

بعد از نظر دارای رابطه (22) مدل دینامیکی ربات به صورت (23) تاسیس

داده می‌شود.

\[
D_0(q) \eta + C_0(q) \eta + G_0(q) \eta = u + \eta(q,q,q,b)
\]

(23)

برای ضمانت کنترل کننده طراحی شده نسبت به نامی‌ها به صورت

و سیستم نواهد نیست به دیدار کنترلی افزوده شود با توجه به اینکه

کنترل به اینکه افزوده شده تونین از نامی‌ها با نامی

داده می‌شود.

\[
u = -D_0(q) \left(K_p(q - q_t) + K_d(q - q_t) - D(q) - \left(C(q, q, \dot{q}) + G(q) \right) - \eta \right)
\]

(24)

با استفاده از نظیره لایاپانو می‌توان پایدار بودن کنترل کننده را تضمین نمود.

\[
q(t) + \tau = q(t) + \tau q(t) + \frac{T}{M} q(t)
\]

(12)

با توجه به مدل دینامیکی معرفی شدی ربات (10) ماتریس مشتق می‌باشد.

\[
Q(t) = \begin{bmatrix} q(t) \\ \dot{q}(t) \\ \ddot{q}(t) \end{bmatrix}
\]

(13)

با دست خواهد داشت.

\[
q(t + \tau) = T(t) Q(t)
\]

(14)

که در رابطه (14) به سبب مدل وابسته به اهدام

بطور مشابه با توجه به رابطه (17) تعیین خواهد داشت.

\[
J = \frac{1}{2} (\dot{Q}(t) - \dot{Q}_r(t))^T \Pi (\dot{Q}(t) - \dot{Q}_r(t))
\]

(15)

که در آن جهت ساده‌سازی روابط نابعه به صورت رابطه (18) داشته.

\[
\Pi = \int_{T_1}^{T_2} T(t)^T T(t) dt
\]

(18)

که در رابطه (18) به داشت.

\[
\dot{q}(t) + \tau = \tau q(t) + \frac{T}{M} \ddot{q}(t)
\]

(13)

با توجه به مدل پیش‌بینی شده از مسیر آینده به صورت رابطه (14) به دست خواهد داشت.

\[
q(t + \tau) = T(t) Q(t)
\]

(14)

که در رابطه (14) به سبب مدل وابسته به اهدام

بطور مشابه با توجه به رابطه (17) تعیین خواهد داشت.

\[
J = \frac{1}{2} (\dot{Q}(t) - \dot{Q}_r(t))^T \Pi (\dot{Q}(t) - \dot{Q}_r(t))
\]

(15)

که در آن جهت ساده‌سازی روابط نابعه به صورت رابطه (18) داشته.

\[
\Pi = \int_{T_1}^{T_2} T(t)^T T(t) dt
\]

(18)

که در رابطه (18) به داشت.

\[
\dot{q}(t) + \tau = \tau q(t) + \frac{T}{M} \ddot{q}(t)
\]

(13)

با توجه به مدل پیش‌بینی شده از مسیر آینده به صورت رابطه (14) به دست خواهد داشت.

\[
q(t + \tau) = T(t) Q(t)
\]

(14)

که در رابطه (14) به سبب مدل وابسته به اهدام

بطور مشابه با توجه به رابطه (17) تعیین خواهد داشت.

\[
J = \frac{1}{2} (\dot{Q}(t) - \dot{Q}_r(t))^T \Pi (\dot{Q}(t) - \dot{Q}_r(t))
\]

(15)

که در آن جهت ساده‌سازی روابط نابعه به صورت رابطه (18) داشته.

\[
\Pi = \int_{T_1}^{T_2} T(t)^T T(t) dt
\]

(18)

که در رابطه (18) به داشت.

\[
\dot{q}(t) + \tau = \tau q(t) + \frac{T}{M} \ddot{q}(t)
\]

(13)

با توجه به مدل پیش‌بینی شده از مسیر آینده به صورت رابطه (14) به دست خواهد داشت.

\[
q(t + \tau) = T(t) Q(t)
\]

(14)

که در رابطه (14) به سبب مدل وابسته به اهدام

بطور مشابه با توجه به رابطه (17) تعیین خواهد داشت.

\[
J = \frac{1}{2} (\dot{Q}(t) - \dot{Q}_r(t))^T \Pi (\dot{Q}(t) - \dot{Q}_r(t))
\]

(15)

که در آن جهت ساده‌سازی روابط نابعه به صورت رابطه (18) داشته.

\[
\Pi = \int_{T_1}^{T_2} T(t)^T T(t) dt
\]

(18)

که در رابطه (18) به داشت.

\[
\dot{q}(t) + \tau = \tau q(t) + \frac{T}{M} \ddot{q}(t)
\]

(13)

با توجه به مدل پیش‌بینی شده از مسیر آینده به صورت رابطه (14) به دست خواهد داشت.

\[
q(t + \tau) = T(t) Q(t)
\]

(14)

که در رابطه (14) به سبب مدل وابسته به اهدام

بطور مشابه با توجه به رابطه (17) تعیین خواهد داشت.

\[
J = \frac{1}{2} (\dot{Q}(t) - \dot{Q}_r(t))^T \Pi (\dot{Q}(t) - \dot{Q}_r(t))
\]

(15)

که در آن جهت ساده‌سازی روابط نابعه به صورت رابطه (18) داشته.

\[
\Pi = \int_{T_1}^{T_2} T(t)^T T(t) dt
\]

(18)

که در رابطه (18) به داشت.

\[
\dot{q}(t) + \tau = \tau q(t) + \frac{T}{M} \ddot{q}(t)
\]
نمونه که همواره مشت نمی‌باشد، در این صورت η همواره همگرایی به صفر خواهید بود از طریق ماتریس انتقال روابط \mathbf{D}_x, \mathbf{D}_y, \mathbf{D}_z صورت می‌نهد، که مقدار η نیز پس رابطه (34) به صورت (37) نتایج داده می‌شود.

\[\eta = L D_0^{-1}(\eta - \eta_{est}) \]

با توجه به رابطه (36)، می‌توانیم حاصل خروجی به صورت (38) بازیابی کنیم.

\[e_\eta + L D_0^{-1}e_\eta = 0 \]

با توجه به رابطه (23)، صورت (39) بازیابی می‌شود.

\[\eta_{est} = -L D_0^{-1}\eta_{est} = \int u(t) \left(D_0(q) q + G_0(q) - u(t) \right) dt \]

از معادله مربوط به شدت در رابطه (39) و همچنین با جایگزینی قانون کنترل پیش‌بین خم مربوط به شدت در رابطه (24) و معادله (38) دیمانیک تشخیص نامناسبی به دست می‌آید.

\[u(t) = -D_0(q) [K_p e_\eta + K_d e_\eta] \]

با استفاده از رابطه (40) و همچنین جایگزینی آن در قانون کنترل.

 tổngال مقدار همواره متغیر خروجی شده در رابطه (42) و جایگزینی آن در معادله (16) خواهد بود.

\[X = AX + BD_0 e_\eta \]

با توجه به اینکه K_p و K_d همواره ثابت می‌باشد، لذا معادله A دارای مقادیر اتصال $\lambda_1 \lambda_2 \lambda_3$ رسیده می‌شود و به صورت (27) به صورت مقدار P مشتق‌گیری خواهد شد.

\[A^T P + PA = -Q \]

حال اگر تابع لایپولات با صورت رابطه (28) در انتهای η_{est} خواهد بود، V معادله (28) Γ ماتریسی مشت نمی‌باشد. با یک بردار مشتق گرفته در انتهای لایپولات v و استفاده از رابطه خم مربوط به شدت در رابطه (26).

\[\dot{V} = -X^T Q X + 2 e_\eta^T (D_0(q) B)^T P x + P e_\eta \]

حال اگر با توجه به رابطه (29)، معادله (30) در صورت $\dot{\eta} = -\Gamma^{-1}(D_0(q) B)^T P x$ خواهد بود.

\[\dot{\eta}_{est} = -\eta - \eta_{est} = -\eta_{est} \]

این معادله عکس نامناسبی با $\eta = 0$ و در انتخاب مقدار تغییرات شدت در رابطه (33) رابطه.

\[\dot{\eta}_{est} = -\eta_{est} = -L D_0^{-1} B^T P X \]

از اینکه η_{est} همواره مقدار η_{est} به همراه با توجه به اینکه $\eta = 0$.

\[\dot{\eta}_{est} = -L (q, q) \eta_{est} - L (q, q) \eta_{est} = -L (q, q) \eta_{est} \]

در انتهای $\eta = 0$ در رابطه (34)، لذا η_{est} مشتق‌گیری خواهد شد.

\[\dot{\eta}_{est} = 0 \]

با توجه به استفاده از معادله (30) رابطه.

\[\dot{\eta}_{est} = -\eta_{est} - \eta_{est} \]

تفکر در رابطه (31) و حاصل رابطه (33).

\[\dot{\eta}_{est} = -\eta_{est} \]

جدول 1 مشخصات فیزیکی ربات

<table>
<thead>
<tr>
<th>ویژگی</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>جرم ربات</td>
<td>50 kg</td>
</tr>
<tr>
<td>طول ربات</td>
<td>2.075 m</td>
</tr>
<tr>
<td>وزن ساقه ربات</td>
<td>2350 kg</td>
</tr>
<tr>
<td>قطر ربات</td>
<td>2.082 m</td>
</tr>
<tr>
<td>مانور برون ربات</td>
<td>140 kg</td>
</tr>
<tr>
<td>ترمز ربات</td>
<td>2.5 m</td>
</tr>
<tr>
<td>کشش ساقه مشت استاندارد</td>
<td>26.25 Nm</td>
</tr>
<tr>
<td>ترمز مشت استاندارد</td>
<td>78.76 Nm</td>
</tr>
</tbody>
</table>

1. Moving along the x axis (surge)
2. Moving along the y axis (sway)
3. Moving along the z axis (heave)
The desired trajectory moving along the x, y and z axes.

Fig. 7 Desired trajectory rotation around the x, y and z axes

Fig. 8 Error of tracking desired trajectory moving along the x, y and z axes with PID controller

Fig. 9 Error of tracking desired trajectory rotation around the x, y and z axes with PID controller

Fig. 6 Desired trajectory moving along the x, y and z axes

- Rotation around the x axis (roll)
- Rotation around the y axis (pitch)
- Rotation around the z axis (yaw)
- Computed Torque Control (CTC)
- Sliding mode control (SMC)
- Proportional-Integral-Derivative (PID)
- Integral Square Error (ISE)
- Integral Time Square Error (ITSE)
- Integral Absolute Error (IAE)

Table:

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Error of tracking (m)</th>
<th>Error of tracking (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
<td>0.015</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>0.025</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Figures and Descriptions:

- **Fig. 7** Desired trajectory rotation around the x, y and z axes.
- **Fig. 8** Error of tracking desired trajectory moving along the x, y and z axes with PID controller.
- **Fig. 9** Error of tracking desired trajectory rotation around the x, y and z axes with PID controller.
- **Fig. 6** Desired trajectory moving along the x, y and z axes.

Equations and Formulas:

\[\text{Error of tracking (m)} = f(x, y, z) \]

\[\text{Error of tracking (rad)} = \theta(x, y, z) \]

where \(f(x, y, z) \) and \(\theta(x, y, z) \) are the functions describing the error of tracking in the x, y, and z axes, respectively.

Conclusion:

The results from the experiments show that the PID controller effectively tracks the desired trajectory in all three axes (x, y, and z). The error of tracking for both the position and orientation is within acceptable limits, indicating the system's capability to follow the desired path accurately.

Keywords: Desired trajectory, tracking error, PID control, motion control.
Fig. 12 Three-dimensional movement of the movable plate

Fig. 13 Absolute total control effort of controllers (Torque actuators)

Table 2 IAE, ISE and ITSE of controllers

Table 11 Absolute total error of tracking desired direction

Fig. 10 Absolute total error of tracking desired direction

Fig. 11 Trajectory of robot with NPC
نمی‌نمی و همچنین عامل محدودیت در وروی کنترلی قابلیت پایداری عملی را نیز دارد.

6- فهرست عناصر

7- پوست

مانتیس به کاربرد شده در معادله دینامیک تبادل کننده

8- مراجع

