بهینه سازی دو هدفه اشکال آریدینامیکی با استفاده از الگوریتم یگنجی گرانتشی

مهدف حسينی پور، مجید ملک جعفریان، مهدی حسینی پور

Two-Objective Optimization of Aerodynamic Shapes Using Gravitational Search Algorithm

Mahdi Hoseynipour, Majid Malek Jafarian*, Ali Safavinejad

Department of Mechanical Engineering, University of Birjand, Birjand, Iran
*
P.O.B. 97175-615, Birjand, Iran, mminajfarian@birjand.ac.ir

ORIGINAL INFORMATION

Original Research Paper
Received 06 February 2017
Accepted 25 February 2017
Available Online 03 May 2017

Keywords:
Two-objective optimization
Gravitational search algorithm
Particle swarm optimization
Parsec method
2D compressible Navier-Stokes equations

ABSTRACT

Gravitational search algorithm (for the first time) has been used for two-objective optimization of airfoil shape in this article. 2D compressible Navier-Stokes equations with Spalart-Allmaras model has been used to simulate viscous and turbulent flow. First, efficiency and accuracy of the optimizer sets have been evaluated using inverse optimization. Objective functions were difference between drag and lift with their corresponding values of the NACA0012 objective airfoil, as a set of airfoils was randomly chosen as starter airfoils in this case, and the aim was to obtain the airfoils that satisfy the considered objective functions. In direct optimization, gravitational search algorithm which has been used in the present work, has achieved proper parameters (related to the Parsec method) and consequently has found optimized airfoils with maximum lift and minimum drag objective functions. This algorithm starts to solve using a set of airfoils and it is directed towards the airfoils that provide the mentioned objective functions. Comparison of the results (Pareto fronts) shows better and more proper performance of the gravitational search algorithm rather than particle swarm optimization algorithm and former researches (done using other meta-heuristic algorithms) for aerodynamic optimizations.

چکیده

در این مقاله الگوریتم یگنجی گرانتشی (یا به انگلیسی Parsc method) برای اولین بار به هدف بهینه سازی یک شکل طراحی شده است. در این مقاله شکل طراحی و هدف بهینه سازی از الگوریتم یگنجی گرانتشی (Parsc method) انتخاب گردیده است. منابع کلی و دسترسی به شکل طراحی و هدف بهینه سازی از الگوریتم یگنجی گرانتشی (Parsc method) انتخاب گردیده است. در این مقاله شکل طراحی و هدف بهینه سازی از الگوریتم یگنجی گرانتشی (Parsc method) انتخاب گردیده است.

1 مقدمه

آریودینامیک یا هواپیما، یکی از دیمانکی گزیده و در حالی که برای تغییر جریان دیگر سرعت و نیروی ها در اطراف یک جسم آشکار است، برای این منظور، یک مورد معمول به همکاری آریودینامیک و دیگر مدل های انرژی و وینگ سایل را حل کرد. سپس به کمک حل به مدت آمد، می توان نیروها و گسترش آریودینامیک آریودینامیک یا هواپیما را به این مدل اضافه کنیم. در این مقاله با استفاده از الگوریتم یگنجی گرانتشی، دو هدفه اشکال آریودینامیکی بهینه سازی گردید.

Please cite this article using:

بهینه سازی دو‌هدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی

مهدی حسینی پور و همکاران

434 مهندسی مکانیک

تبیین مسأله

یکی از مهم‌ترین مسائل مهندسی آمریکای ظرفیت جستجوی شکل‌گیری شده آب‌کار به‌منظور بهینه‌سازی آنها مطرح می‌شود. همچنین مسائلی نظیر محاسبات زیرساخت‌های آب‌کار و حمل و نقل، کاهش قدرت‌های مقاومتی و گرد و هم، بهینه‌سازی شکل‌گیری در پی‌روی این مسائل مطرح می‌شود. در این مطالعه بهینه‌سازی آب‌کار با استفاده از الگوریتم جستجوی گرانشی (CFAO) مورد بررسی قرار گرفته است.

2. روش تولید هندرسی ایرفویل

طبق مطالعات فوق یکی از عناصر و هزینه‌های هندرسی ایرفویل‌ها روش‌های یافتن بهینه‌تری در طراحی آنها می‌باشد. به‌منظور تولید هندرسی‌های بهینه‌تر از طریق الگوریتم جستجوی گرانشی، یک روش پیشنهادی برای شکل‌گیری ایرفویل در نظر گرفته شده است. به‌منظور بهینه‌سازی شکل‌گیری، از الگوریتم جستجوی گرانشی استفاده گردید. در این روش، بهینه‌سازی شکل‌گیری بر اساس متغیرهای نقطه‌گیری شده و نسبت پارامتر بهینه‌سازی محاسبه شده است.

3. محاسبات آب‌کار

برای به‌منظور بهینه‌سازی آب‌کار با استفاده از الگوریتم جستجوی گرانشی، این روش مورد بررسی قرار گرفته است. این روش به‌منظور بهینه‌سازی شکل‌گیری ایالات آمریکا مورد استفاده قرار گرفته است.

4. محاسبات آب‌کار

برای به‌منظور بهینه‌سازی آب‌کار با استفاده از الگوریتم جستجوی گرانشی، این روش مورد بررسی قرار گرفته است. این روش به‌منظور بهینه‌سازی شکل‌گیری ایالات آمریکا مورد استفاده قرار گرفته است.

1. Computational Fluid Dynamic
2. Multi-Objective Parzen based Estimation of Distribution
کمک طرح گام زمانی رانگ-کوتاه 4 محدوده انجام می‌گردد. میانی اساسی و ابتدایی حل عددی مکانیک ابتدایی توسط جهانی و همکاران [18] در ارتباط با مسائل جریان تراکم‌پذیر معرفی شد. به منظور بدست آوردن نوسانات درمحور امواج ضروری، مرحله اول متعلق مسئولیت این کامپیوتر در گرفتن شده است. به دلیل اینکه هدف در مطالعه محاسبات پیش‌برنده روشن‌بازی شده و می‌باشد، روش‌های نسبت‌سازی مقادیر گرمایی تظاهراتی و تراکم‌پذیری جسمی از دو کلید بکار رفته است. حل عددی روش تهیه فرمولی از محققان در سه دست‌آورده در مسیر اکثر است. نتایج کامپیوتری شکل 2 آموزش‌داده علی‌البیاتی و بیش از کامپیوتری، مورد استفاده در culmination اکثریت با کاهش به شدت است. 2.1. اندازه‌گیری و شاخص‌های جرمی از کامپیوتری، مکانیک مدرس، مرداد 87 بهره‌وری، مشاهده شده است. اکثر این روش‌ها به صورت جمعیتی عمل کرده و برای بدست آوردن جرم‌هایی که ارزش دارند، از استفاده کامپیوتری مکانیکی به ویژه مسیری حل مسائل برنامه‌های راهنما آموزشی را ایجاد می‌کند. 1. بازاریکایی مسئولیت از شکل مورد استفاده در کار حاضر

\[
\frac{\partial W}{\partial t} + \frac{\partial F_i}{\partial x} + \frac{\partial G_j}{\partial y} = \frac{1}{Re_{\infty}} \left(\frac{\partial F_i}{\partial x} + \frac{\partial G_j}{\partial y} \right) + S
\]

در معادلات (2) تا (8) با ترکیب مولکول‌های سرعت در جهات x و y و z، منجر می‌شود که درجه ذهنی سیستم‌های فلزی است. حس و موقعیت‌های دیگر درجه نش نشان دهنده حاکم از کدام انتخاب‌هایی را نشان می‌دهد. به‌طور مختصر، حذف جمله‌ی تار و دهه اکثر مورد استفاده شده است. در این کامپیوتری، اکثر انتخاب‌هایی را روس حجم محور دارند (طرح تفکیک مکمل) صورت گرفته است. مهم‌ترین انتخاب‌هایی را زمانی صریح به
شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\text{GSA}^\text{MOGSA} \]

1. **GSA (Gravitational Search Algorithm)**
2. **MOGSA** (Multi Objective Gravitational Search Algorithm)

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]

شکل 3 تغییر شتاب هر جرم در جریان نیروی توزیع شده

\[F_i(t) = \sum_{j \neq i} \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

GSA (Gravitational Search Algorithm)

\[\sum \frac{r \times F_{ij}}{M_i(t)} \]

\[v_i(t+1) = a_i(t) + rand \times v_i(t) \]

\[x_i(t+1) = x_i(t) + v_i(t+1) \]

MOGSA (Multi Objective Gravitational Search Algorithm)

\[\text{MOGSA}^\text{MOGSA} \]
بهینه سازی دوهدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی

(PSO)

2-4- معرفی الگوریتم جمعیت ذرات (MOPSO)

یکی از این کناره‌گیری‌ها در جستجو ادای تابع بهینه‌سازی می‌باشد. در این روش، تابع بهینه‌سازی در یک فضای محدود جستجو می‌شود.

اولین مرحله یک گروه شامل جملات تصادفی آغاز می‌شود و جستجوی الگوریتم با تاکیدهای متغیر صفر نمی‌باشد. در این روش، تابع بهینه‌سازی در یک فضای محدود جستجو می‌شود.

نتایج

5- نتایج

قبل از این بهینه‌سازی دوهدفه مستقیم، به منظور تواناً دادن توانایی و صحت مجموعه بهینه‌سازی (شامل توصیه‌های ابتدایی) حائز عدی و

\[\text{یکی از این کناره‌گیری‌ها در جستجو ادای تابع بهینه‌سازی می‌باشد. در این روش، تابع بهینه‌سازی در یک فضای محدود جستجو می‌شود.}

\[\text{نمونه‌گیری یکی از این کناره‌گیری‌ها در جستجو ادای تابع بهینه‌سازی می‌باشد. در این روش، تابع بهینه‌سازی در یک فضای محدود جستجو می‌شود.}

\[\text{نتایج

5- نتایج

قبل از این بهینه‌سازی دوهدفه مستقیم، به منظور تواناً دادن توانایی و صحت مجموعه بهینه‌سازی (شامل توصیه‌های ابتدایی) حائز عدی و}
بهینه سازی دوهدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی مهدی حسینی پور و همکاران

438 مهندسی مکانیک

(33) \[\min \alpha = | C_t - T_L | \]

(34) \[\min \alpha = | C_t - T_D | \]

جدول 1 مقادیر تابع هدف بهینه سازی مکوس دوهدفه به دست آمده توسط الگوریتم جستجوی گرانشی

<table>
<thead>
<tr>
<th>شماره</th>
<th>برآورد اثربخش اول</th>
<th>برآورد اثربخش دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.4214 \times 10^{-3}</td>
<td>1.0611 \times 10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>3.6876 \times 10^{-4}</td>
<td>4.0082 \times 10^{-4}</td>
</tr>
</tbody>
</table>

\[\alpha = 2 \left(\frac{M_{in}}{0.8} \right)^{0.5} \]

جدول 2 مقادیر برآوردی از ایرودینامیکی شامل از الگوریتم جستجوی گرانشی

<table>
<thead>
<tr>
<th>شماره</th>
<th>سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NACA0012</td>
</tr>
<tr>
<td>2</td>
<td>NACA0012</td>
</tr>
</tbody>
</table>

جدول 3 ساختار ورود دستی برای راه اندازی الگوریتم جستجوی گرانشی

<table>
<thead>
<tr>
<th>روش جداگانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 2)</td>
</tr>
<tr>
<td>(\beta = 0.8)</td>
</tr>
<tr>
<td>(\beta = 1.6)</td>
</tr>
<tr>
<td>(\beta = 0.5)</td>
</tr>
<tr>
<td>(\beta = 0.1)</td>
</tr>
</tbody>
</table>

جدول 4 حاصل از ایرودینامیکی جستجوی گرانشی و بهینه سازی جمعه

| سازی | روش جداگانه |
|-------|
| NACA0012 |

این جدول را به عنوان یک مثال بهینه سازی دوهدفه از ایرودینامیکی در مورد ایرودینامیکی جستجوی گرانشی و بهینه سازی جمعه نشان می‌دهد.

5- بهینه سازی مکوس دوهدفه

(48) \[\frac{1}{2} \rho V^2 S C_L \]

(49) \[\frac{1}{2} \rho V^2 S C_D \]

(50) \[\frac{1}{2} \rho V^2 S C_M \]

Table 1 Objective functions values of two-objective inverse optimization using gravitational search algorithm

<table>
<thead>
<tr>
<th>انواع هدف</th>
<th>شماره</th>
<th>برآورد اثربخش اول</th>
<th>برآورد اثربخش دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>ایرودینامیکی برآوردی</td>
<td>3.4214 \times 10^{-3}</td>
<td>1.0611 \times 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>ایرودینامیکی برآوردی</td>
<td>3.6876 \times 10^{-4}</td>
<td>4.0082 \times 10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha = 2 \left(\frac{M_{in}}{0.8} \right)^{0.5} \]

Table 2 Lift and drag values of airfoils using two-objective inverse gravitational search algorithm

<table>
<thead>
<tr>
<th>شماره</th>
<th>سازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NACA0012</td>
</tr>
<tr>
<td>2</td>
<td>NACA0012</td>
</tr>
</tbody>
</table>

Table 3 Constants used in gravitational search algorithm and swarm particle optimization algorithm

<table>
<thead>
<tr>
<th>روش جداگانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 2)</td>
</tr>
<tr>
<td>(\beta = 0.8)</td>
</tr>
<tr>
<td>(\beta = 1.6)</td>
</tr>
<tr>
<td>(\beta = 0.5)</td>
</tr>
<tr>
<td>(\beta = 0.1)</td>
</tr>
</tbody>
</table>

Table 4 Result of two-objective inverse optimization using gravitational search algorithm

<table>
<thead>
<tr>
<th>سازی</th>
<th>روش جداگانه</th>
</tr>
</thead>
</table>
بهینه‌سازی دو‌هدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی

مهدی حسینی پور و همکاران

مهندسی مکانیک مدرس، مرداد 35، دوره 39، شماره 7

جریان

جدول 4 محدوده‌ی پارامترهای کنترلی تولید هندسه‌ی روش پارس

<table>
<thead>
<tr>
<th>r_0</th>
<th>X_{up}</th>
<th>Z_{up}</th>
<th>X_{lo}</th>
<th>Z_{lo}</th>
<th>Z_{slo}</th>
<th>Z_{slo}</th>
<th>a_{TE}</th>
<th>β_{TE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.6</td>
<td>0.1</td>
<td>0.7</td>
<td>0.06</td>
<td>-0.01</td>
<td>0.3</td>
<td>0.01</td>
<td>0.5</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1</td>
<td>0.02</td>
<td>0.1</td>
<td>0.04</td>
<td>-1.2</td>
<td>0.15</td>
<td>0.05</td>
<td>0</td>
</tr>
</tbody>
</table>

شکل 4 مقایسه نتایج روش‌های مختلف به منظور بهینسازی سنتیم‌توانه‌ی ای豆腐

شکل 5 تغییرات سطح فشار سپرآمیز با ضریب بازپس، پس از بهینه‌سازی با الگوریتم جستجوی گرانشی

شکل 6 دو نمونه ای豆腐 بهینه‌ی نسبت آماده توسط روش پارس

شکل 7 توزیع نمودار ضریب توده شکل 6 ای豆腐 با بیشترین نسبت آماده توسط $\alpha = 2$, $M_{\infty} = 0.8$, $Re_{\infty} = 10^6$ MOGSA

شکل 8 توزیع نمودار ضریب توده شکل 7 ای豆腐 با کمترین نسبت آماده توسط $\alpha = 2$, $M_{\infty} = 0.8$, $Re_{\infty} = 10^6$ MOGSA

شکل 4 مقایسه نتایج روش‌های مختلف به منظور بهینسازی سنتیم‌توانه‌ی ای豆腐

شکل 5 تغییرات سطح فشار سپرآمیز با ضریب بازپس، پس از بهینه‌سازی با الگوریتم جستجوی گرانشی
6- تیجه‌گری
در کار حاضر از الگوریتم‌های جستجوگرایانه (برای اولین بار) و جمعیت
دراژ به همراه روش چندین هندسه پاسی به نظر بهینه‌سازی دو هدفه
هندسه ایرودینامیک استفاده شد. مطالعات ترکیبی دو بینی ناوی-اسکوکسی به
همراه مدل سیستم‌های سه‌پا ایرودینامیکی حریان معرفی، استفاده
قرار گرفت کرایی و ساخت مجموعه‌های بهینه‌سازی برای هندسه‌ها
و مستقیم دو هدفه مورد بررسی قرار گرفته و نتایج زیر حاصل شد:
1. نتایج بهینه‌سازی معکوس حاکی از عملکرد خوب مجموعه بهینه‌سازی
می‌باشد.
2. بهینه‌سازی مستقیم دو هدفه ایرودینامیکی با استفاده از دو الگوریتم
جستجوگرایانه و جمعیتی در زمینه توان و بهینه‌پردازی می‌باشد.
3. مشخصات روش MOPSO در میزان بستری را نسبت به روش
MOSA تقسیم می‌کند.
4. در نهایت می‌توان این تحقیق را گرفت که الگوریسم جستجوگرایانه
برای بهینه‌سازی دو هدفه ایرودینامیکی به همراه روش چندین هندسه
پاسی، بهتر از روش جمعیت دراژ می‌باشد.
روش قدرتمند کارآیی در مسائل ایرودینامیکی استفاده نمود.

7- فرمول‌العمل

\[\frac{dZ}{dx_{x=1}} = \tan(\alpha_{TE} - \frac{1}{2} \beta_{TE}) \]

\[\frac{d^2Z}{dx^2_{x=0}} = Z_{xx0} \]

\[Z(1) = Z_{TE} + \frac{1}{2} \Delta Z_{TE} \]

\[\frac{dZ}{dx_{x=0}} = 0 \]

\[\frac{d^2Z}{dx^2_{x_{lo}}} = Z_{xxlo} \]

\[Z(1) = Z_{TE} - \frac{1}{2} \Delta Z_{TE} \]

\[\frac{dZ}{dx_{x=1}} = \tan(\alpha_{TE} + \frac{1}{2} \beta_{TE}) \]

\[\frac{dZ}{dx_{x=0}} = 0 \]

\[\frac{d^2Z}{dx^2_{x_{lo}}} = Z_{xxlo} \]

\[Z(1) = Z_{TE} - \frac{1}{2} \Delta Z_{TE} \]

\[\frac{dZ}{dx_{x=1}} = \tan(\alpha_{TE} + \frac{1}{2} \beta_{TE}) \]

\[\frac{dZ}{dx_{x=0}} = 0 \]

\[\frac{d^2Z}{dx^2_{x_{lo}}} = Z_{xxlo} \]

\[Z(1) = Z_{TE} - \frac{1}{2} \Delta Z_{TE} \]

\[\frac{dZ}{dx_{x=1}} = \tan(\alpha_{TE} + \frac{1}{2} \beta_{TE}) \]
Table 5 Lift and drag values of 82 airfoils using two-objective gravitational search algorithm

<table>
<thead>
<tr>
<th>Airfoil</th>
<th>Lift</th>
<th>Drag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3121011</td>
<td>0.0499011</td>
</tr>
<tr>
<td></td>
<td>0.2892952</td>
<td>0.0049125</td>
</tr>
<tr>
<td></td>
<td>0.3472603</td>
<td>0.0053332</td>
</tr>
<tr>
<td></td>
<td>0.3594899</td>
<td>0.0054861</td>
</tr>
<tr>
<td></td>
<td>0.3835797</td>
<td>0.0057441</td>
</tr>
<tr>
<td></td>
<td>0.4165090</td>
<td>0.0059127</td>
</tr>
<tr>
<td></td>
<td>0.4248326</td>
<td>0.0062968</td>
</tr>
<tr>
<td></td>
<td>0.4879489</td>
<td>0.0086113</td>
</tr>
<tr>
<td></td>
<td>0.4284346</td>
<td>0.0065579</td>
</tr>
<tr>
<td></td>
<td>0.4482966</td>
<td>0.0068151</td>
</tr>
<tr>
<td></td>
<td>0.4437697</td>
<td>0.0068508</td>
</tr>
<tr>
<td></td>
<td>0.4885976</td>
<td>0.0068289</td>
</tr>
<tr>
<td></td>
<td>0.4982906</td>
<td>0.0088669</td>
</tr>
<tr>
<td></td>
<td>0.4892057</td>
<td>0.0085101</td>
</tr>
<tr>
<td></td>
<td>0.4816365</td>
<td>0.0080461</td>
</tr>
<tr>
<td></td>
<td>0.4785555</td>
<td>0.0077506</td>
</tr>
<tr>
<td></td>
<td>0.4771493</td>
<td>0.0080064</td>
</tr>
<tr>
<td></td>
<td>0.4788410</td>
<td>0.0085474</td>
</tr>
<tr>
<td></td>
<td>0.5360591</td>
<td>0.0104801</td>
</tr>
<tr>
<td></td>
<td>0.5047808</td>
<td>0.0083571</td>
</tr>
<tr>
<td></td>
<td>0.5130222</td>
<td>0.0097643</td>
</tr>
<tr>
<td></td>
<td>0.5356398</td>
<td>0.0103651</td>
</tr>
<tr>
<td></td>
<td>0.4949555</td>
<td>0.0087968</td>
</tr>
<tr>
<td></td>
<td>0.5267453</td>
<td>0.0101166</td>
</tr>
<tr>
<td></td>
<td>0.5226365</td>
<td>0.0097990</td>
</tr>
<tr>
<td></td>
<td>0.5432127</td>
<td>0.0108202</td>
</tr>
<tr>
<td></td>
<td>0.5470815</td>
<td>0.0109524</td>
</tr>
<tr>
<td></td>
<td>0.5479866</td>
<td>0.0112355</td>
</tr>
<tr>
<td></td>
<td>0.5551655</td>
<td>0.0114051</td>
</tr>
<tr>
<td></td>
<td>0.5552331</td>
<td>0.0113475</td>
</tr>
<tr>
<td></td>
<td>0.5798331</td>
<td>0.0112351</td>
</tr>
<tr>
<td></td>
<td>0.5995600</td>
<td>0.0125731</td>
</tr>
<tr>
<td></td>
<td>0.6105102</td>
<td>0.0133710</td>
</tr>
<tr>
<td></td>
<td>0.6082991</td>
<td>0.0132255</td>
</tr>
<tr>
<td></td>
<td>0.6060420</td>
<td>0.0130612</td>
</tr>
<tr>
<td></td>
<td>0.6364378</td>
<td>0.0135466</td>
</tr>
<tr>
<td></td>
<td>0.6572688</td>
<td>0.0145961</td>
</tr>
<tr>
<td></td>
<td>0.6562341</td>
<td>0.0145638</td>
</tr>
<tr>
<td></td>
<td>0.6681375</td>
<td>0.0150936</td>
</tr>
<tr>
<td></td>
<td>0.6475128</td>
<td>0.0138929</td>
</tr>
<tr>
<td></td>
<td>0.6280863</td>
<td>0.0134923</td>
</tr>
<tr>
<td></td>
<td>0.5653728</td>
<td>0.0114278</td>
</tr>
<tr>
<td></td>
<td>0.6771692</td>
<td>0.0153023</td>
</tr>
<tr>
<td></td>
<td>0.6487751</td>
<td>0.0143546</td>
</tr>
<tr>
<td></td>
<td>0.6648240</td>
<td>0.0149193</td>
</tr>
<tr>
<td></td>
<td>0.6644264</td>
<td>0.0148879</td>
</tr>
<tr>
<td></td>
<td>0.7478254</td>
<td>0.0182180</td>
</tr>
<tr>
<td></td>
<td>0.7042311</td>
<td>0.0164526</td>
</tr>
<tr>
<td></td>
<td>0.7446352</td>
<td>0.0180001</td>
</tr>
<tr>
<td></td>
<td>0.7347934</td>
<td>0.0117461</td>
</tr>
<tr>
<td></td>
<td>0.8027150</td>
<td>0.0225885</td>
</tr>
<tr>
<td></td>
<td>0.7926859</td>
<td>0.0211515</td>
</tr>
<tr>
<td></td>
<td>0.7727256</td>
<td>0.0196515</td>
</tr>
<tr>
<td></td>
<td>0.8051478</td>
<td>0.0227014</td>
</tr>
<tr>
<td></td>
<td>0.8040695</td>
<td>0.0226475</td>
</tr>
<tr>
<td></td>
<td>0.8161467</td>
<td>0.0232976</td>
</tr>
<tr>
<td></td>
<td>0.7959086</td>
<td>0.0213576</td>
</tr>
<tr>
<td></td>
<td>0.7858864</td>
<td>0.0208465</td>
</tr>
<tr>
<td></td>
<td>0.7327843</td>
<td>0.0173712</td>
</tr>
<tr>
<td></td>
<td>0.7349944</td>
<td>0.0176219</td>
</tr>
<tr>
<td></td>
<td>0.7270304</td>
<td>0.0171039</td>
</tr>
<tr>
<td></td>
<td>0.7365267</td>
<td>0.0176653</td>
</tr>
<tr>
<td></td>
<td>0.7428679</td>
<td>0.0179278</td>
</tr>
<tr>
<td></td>
<td>0.7289777</td>
<td>0.0171503</td>
</tr>
<tr>
<td></td>
<td>0.7393818</td>
<td>0.0178126</td>
</tr>
<tr>
<td></td>
<td>0.7604886</td>
<td>0.0187957</td>
</tr>
<tr>
<td></td>
<td>0.8644376</td>
<td>0.0329891</td>
</tr>
<tr>
<td></td>
<td>0.7721658</td>
<td>0.0195061</td>
</tr>
</tbody>
</table>
بهینه سازی دو هدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی

Mehdi Hosseini Pour and colleagues

442

مهندسی مکانیک مدرس، مرداد 35، دوره 39، شماره 7

بهینه سازی دو هدفه اشکال آیرودینامیکی با استفاده از الگوریتم جستجوی گرانشی

(فاطمی)

