تحليل ارتعاشات آزاد نانو ورق‌های منظومی تابعی مدرج در محیط حرارتی بر اساس
نتوی تشکیل اصلاح شده

علي بخششی1، کوروش خرمندی2

1- استاد، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد علوم و فنون تехنیک ایران، تهران
2- آموزشگاه مهندسی تعمیرات، دانشگاه آزاد ایران
k-khorshidi@araku.ac.ir

Free vibration of functionally graded rectangular nanoplates in thermal environment based on the modified couple stress theory

Ali Bakhsheshy1, Kourosh Khorshidi2

1- Department of Mechanical Engineering, Islamic Azad University of Science and Research, Arak, Iran
2- Department of Mechanical Engineering, University of Arak, Arak, Iran
* P.O.B. 3815688349 Arak, Iran, k-khorshidi@araku.ac.ir

ABSTRACT
In the present study the free vibration analysis of functionally graded rectangular nanoplates in thermal environment is investigated. The modified coupled stress theory based on the first order shear deformation theory has been used to obtain the natural frequencies of the nanoplate. Modified coupled stress theory is a non-classical theory. In this theory material length scale parameter is applied to capture the size effect of the microstructures that the earlier classical plate theories were not able to explain. Functionally graded material properties are varied continuously and smoothly along the thickness. The Poisson’s ratio of the FG plate is assumed to be constant in the whole plate. In order to validate the present method, the natural frequencies of both the functionally graded rectangular plate and the rectangular nanoplates are compared with those reported in the literature, separately. Finally, the effect of various factors such as the power law index n, the thickness to length scale parameter ratio h/l, aspect ratio a/h on the natural frequencies of plates in thermal environments with different temperatures are presented and discussed in detail.

1- مقدمه
از مبانی سازه‌های پیاگردید در صمت‌های نانو به ورق‌ها اشاره کرد که به طور وسیع در شاخه‌های مختلف مهندسی از جمله مکانیک، نانوهای‌پرتره و دانشگاه‌های کاربردی پیشرفت علم، ناشی در جهت اصلاح و توسیع خواص مواد بیش از اندازه احساس می‌شود. نانو ورق‌ها در زمینه‌هایی از ریز‌رخشدایی به شماره انواع مختلف می‌رود که علت آن‌ها امنیتی بوده که این امنیت به بهبود خواص الکتریکی، استحکام و افزایش عمر انعطاف‌پذیری مواد می‌شود.

1- Functionally Graded Material

Please cite this article using:
A. Bakhsheshy, K. Khorshidi, Free vibration of functionally graded rectangular nanoplates in thermal environment based on the modified couple stress theory, Modernes
نتایج به ثبات آزمایش‌های انجام شده نشان دهنده این است که این سیستم می‌تواند نتایجی دقیق و ساده‌العملی ارائه دهد.

پژوهشگران:

[1] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[2] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[3] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[4] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[5] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[6] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[7] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[8] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[9] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[10] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[12] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[13] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[14] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[15] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[16] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[17] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[18] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.

[19] میرزا هاشمی و کمالدلی، مدل‌سازی سیستم‌های دیفرانسیل میکرو/نیکرو و ارتباط آنها با مدل‌های میکرو‌ریزی.
\[U(x, y, z, t) = \phi(x, y, t) \tag{12} \]
\[V(x, y, z, t) = \psi(x, y, t) \tag{13} \]
\[W(x, y, z, t) = w(x, y, t) \tag{14} \]

\[e_s = \frac{\partial \phi}{\partial x} e_x + \frac{\partial \phi}{\partial y} e_y \tag{16}, 15 \]
\[\gamma_s = \frac{\partial W}{\partial y} e_x + \frac{\partial W}{\partial x} e_y + \phi_s \tag{18}, 17 \]
\[\alpha_s = \frac{\partial W}{\partial x} e_x + \frac{\partial W}{\partial y} e_y + \phi_s \tag{20}, 19 \]

با توجه به قانون هونگ تعیین شده، معادلات ساختاری برای ورق از جنس مداد نامی در مدخل در نظر گرفتن ضرب نشایی شکل در اثر مربوطه جابجایی بین می‌شود.

\[\sigma_x = \frac{1}{3} \begin{bmatrix} \phi_{xx} & \phi_{xy} & \phi_{xz} \\ \phi_{yx} & \phi_{yy} & \phi_{yz} \\ \phi_{zx} & \phi_{zy} & \phi_{zz} \end{bmatrix} e_x \tag{22} \]
\[\sigma_y = \frac{1}{3} \begin{bmatrix} \phi_{xx} & \phi_{xy} & \phi_{xz} \\ \phi_{yx} & \phi_{yy} & \phi_{yz} \\ \phi_{zx} & \phi_{zy} & \phi_{zz} \end{bmatrix} e_y \tag{23} \]
\[\sigma_z = \frac{1}{3} \begin{bmatrix} \phi_{xx} & \phi_{xy} & \phi_{xz} \\ \phi_{yx} & \phi_{yy} & \phi_{yz} \\ \phi_{zx} & \phi_{zy} & \phi_{zz} \end{bmatrix} e_z \tag{24} \]
\[\sigma_{xx} = 0, \sigma_{yy} = 0, \sigma_{zz} = E(\varepsilon_x) \tag{25} \]
\[\sigma_{xy} = 0, \sigma_{xz} = 0, \sigma_{yz} = 0 \tag{26} \]

\[\Pi_1 = \frac{1}{2} \left(\sigma : e + m : \chi \right) d\lambda \tag{6} \]

\[m \text{ نیروی نگار تنش، } \chi \text{ نیروی نگار تنش مداری و } e \text{ عرض ناپدید کننده تنش کول درب بوده و طبق روابط (29-30) محاسبه می‌شود.} \]

\[\theta = \frac{1}{2} \left(\nabla \theta + (\nabla \theta)^T \right) \tag{8} \]

\[\sigma = \lambda \varepsilon + 2\mu \varepsilon \tag{9} \]

\[m = 2I \mu \chi \tag{10} \]

\[\theta = \frac{1}{2} \left(\varepsilon - \varepsilon \right) \tag{11} \]

\[\chi_a = \frac{1}{2} \frac{\partial W}{\partial x} e_x - \frac{1}{2} \frac{\partial W}{\partial y} e_y \tag{31} \]
مقدار تانسور m نیز با جاشنیا روابط (39) در روابط (10) محاسبه می‌شود. بر اساس تغییر شکل پرشه اول به صورت رابطه (37) باید محاسبه شود.

$U_s = U_{sc} + U_{sec}$

ارزی کرنش ورق مربوط به تغییرات الکتریکی و الکتریکی U_{esc} کرنش ورق مربوط به تغییرات کششی که به ترتیب در روابط (38) قابل بیان می‌باشد.

$U_{sec} = \frac{1}{2} \int (\sigma_{u\nu} + \sigma_{v\nu} + \sigma_{w\nu}) d\lambda$

$\Pi_{sec} = \frac{1}{2} \int (m_{x\nu} + m_{y\nu} + 2m_{y\nu} + m_{y\nu} + m_{y\nu} + 2m_{y\nu} + 2m_{y\nu}) d\lambda$

$M_{x\nu} = M_{x\nu} + M_{y\nu} + M_{y\nu} + M_{y\nu} + M_{y\nu} + M_{y\nu} + M_{y\nu}$

در معادلات (40) تغییرات Q_x و Q_y کشتار خمی Y_x و Y_y, Y_{xx}, Y_{yy}, Y_{xy}, کنشگر کشورت T_{xx} و T_{yy} و کشورت T_{xy} کشورت بالا و می‌باشد به صورت رابطه (41)

$M_{x\nu}(T_{xx}, T_{yy}) = \left[\sigma_{u\nu} \sigma_{w\nu} \sigma_{w\nu} \right] d\lambda$

$M_{x\nu}(T_{xx}, T_{yy}) = \left[(m_{x\nu} m_{y\nu} m_{y\nu}) d\lambda \right.$

$Q_x, Q_y = \left[(\sigma_{u\nu} \sigma_{w\nu} \sigma_{w\nu}) d\lambda \right.$

$\frac{b}{2} \int_{-b}^{b} \rho(z, U,T)(U)^2 + V^2 + W^2 dV dW$

$U = \sum_{m=1}^{N} \sum_{a=1}^{A} A_{na} \cos(m\pi x) \sin(n\pi y) b$

$V = \sum_{m=1}^{N} \sum_{a=1}^{A} B_{na} \sin(m\pi x) \cos(n\pi y) b$

$W = \sum_{m=1}^{N} \sum_{a=1}^{A} C_{na} \sin(m\pi x) \sin(n\pi y) b$
جدول 1 ضرایب ویسکوزیته و عدم افزایش ضرایب

<table>
<thead>
<tr>
<th>Si₃N₄ (ceramic)</th>
<th>Ti-6Al-4V (metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (kg/m³)</td>
<td>ρ (kg/m³)</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>E (GPa)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>43.348</td>
<td>43.348</td>
</tr>
<tr>
<td>56.122</td>
<td>56.122</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10^7</td>
<td>10^7</td>
</tr>
<tr>
<td>10^11</td>
<td>10^11</td>
</tr>
</tbody>
</table>

که در این روابط

\[\frac{E_{min}}{E_{max}} \]

که می‌باشد آن‌ها روند رنگ حساب‌نامه می‌شوند. بر اساس روش آزمایش-

رهیجی (محلول آزمایش‌ها) و با استفاده از تنظیم‌های موجود،

که جک این شرایط فکرانستیلوپی طبیعی و برای حساب مقدار

سخت‌تر به صورت رابطه (65) تعیین می‌گردد.

\[\Pi = \sum U_{max} - \sum T_{max} \]

(65)

برای کمیسیون مقدار (65)، روابط (70) و (71) را عوامل داشت.

\[\frac{\partial E_{nm}}{\partial \alpha} = 0 \]

(70)

و \[\frac{\partial E_{nm}}{\partial \alpha} = 0 \]

(71)

در این رابطه

\[K_{ef} \]

در مقدار [M]

\[K_{ef} \]

و \[\alpha \]

در مقدار

\[(\alpha)^2 \]

(71)

برای کمیسیون مقدار (65) روابط (70) و (71) را عوامل داشت.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 3 ضرایب تعیین می‌شوند.

\[[K_{ef}] - [K_{ef}] = 0 \]

(71)

جدول 4 ضرایب تعیین می‌شوند.

\[\alpha = \beta \]

(71)

برای کمیسیون مقدار (65) روابط (70) و (71) را عوامل داشت.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 5 ضرایب تعیین می‌شوند.

\[\alpha = \beta \]

(71)

جدول 6 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 7 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 8 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 9 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 10 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 11 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)

جدول 12 ضرایب تعیین می‌شوند.

\[\frac{E_{nm}}{E_{nm}} = 0 \]

(70)

و \[\frac{E_{nm}}{E_{nm}} = 0 \]

(71)
فلت استفاده شده است. شرایط متمری برای کلیه نتایج ارائه شده، شرایط مزیت تکیهگاه چهار طبقه ساده (SSS) است. پارامتر مایع طول در کلیه نتایج 17.6μm

در شکل (3) نمودار تغییرات فرکانس پایه ورق تابع مدرج بر حسب تغییرات نسبت طول به ضخامت (ر = a/h) برای نسبت ضخامت به پارامتر (r = h/l) می‌باشد. می‌توان میزان درجه مختلف در محیطی با دما (T) = 3000K مایع داده شده است. نسبت اضلاع a/b = 0.5، و ضریب نسبت طول به ضخامت (r = h/l) است. با توجه به شکل (3) مشاهده می‌گردد که در این شرایط، نسبت طول به ضخامت با تغییرات فرکانس پایه ورق کاهش می‌یابد. در روند این کاهش رهنه رفته از سبب شدن کاهش می‌شود همچنین مشاهده می‌شود با افزایش نسبت طول به ضخامت

در شکل (4) نمودار تغییرات فرکانس پایه ورق تابع مدرج بر حسب تغییرات نسبت ضخامت به پارامتر مقیاس طول (r = h/l) برای ضریب نسبت طول به ضخامت (r = h/l) می‌باشد. می‌توان میزان درجه مختلف در محیطی با دما (T) = 5000K مایع داده شده است. نسبت اضلاع a/b = 1. و ضریب نسبت طول به ضخامت (r = h/l) از 0.5 تا 5 مایع داده شده است. به دلیل عدم دقت کافی تریالهای کلاسیک بر مایعه، فرکانس سیستم در تغییرات بازار کوچک مانند طول که در شکل قبل ماهشهرته شده مثال، نمونه چشمگیری میان تاپی تولید نسبت حفر از انتخاب و تغییرات کلاسیک در مقایسه بازار کوچک تغییرات h = 4L

در شکل (5) نمودار تغییرات فرکانس پایه ورق تابع مدرج بر حسب درجه مختلف ضخامت به پارامتر مقیاس طول، از 0 تا 10 درجه مختلف ضخامت به پارامتر مقیاس طول، در محیطی با دما (T) = 5000K مایع داده شده است. نسبت اضلاع a/b = 1. و ضریب نسبت طول به ضخامت (r = h/l) می‌باشد. در این شکل مشاهده می‌گردد که در این شرایط تغییرات فرکانس پایه ورق کاهش می‌یابد. در روند این کاهش رهنه رفته از سبب شدن کاهش می‌شود همچنین مشاهده می‌شود با افزایش نسبت طول به ضخامت

در شکل (6) نمودار تغییرات فرکانس پایه ورق تابع مدرج بر حسب تعادل دمای محیطی برای نسبت ضخامت به پارامتر مقیاس طول مختلف نمایش داده شده است. این نمودار به نسبت ضخامت (h/l) 0 تا 1 و درجه مختلف ضخامت به پارامتر مقیاس طول مختلف در محیطی با دما (T) = 5000K مایع داده شده است. نسبت اضلاع a/b = 1. و ضریب نسبت طول به ضخامت (r = h/l) است. در این شکل مشاهده می‌گردد که در این شرایط تغییرات فرکانس پایه ورق کاهش می‌یابد. در روند این کاهش رهنه رفته از سبب شدن کاهش می‌شود همچنین مشاهده می‌شود با افزایش نسبت طول به ضخامت

شاخص انتخابات آزاد نوین ورق‌های مستقل‌شده نابی مدرج در محیط حرارتی بر اساس نتایج کاوه اصلی شده

مقدمه مکانیک مدرسه مهندسی ساختمان، دانشگاه صنعتی، تهران، 1393. دوره 14، شماره 15

328
در شکل ۹ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۸ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۷ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۶ نتایج نشان می‌دهد ارتباط آزاد توان و طول وابسته به فرکانس اسپین مطلوب در فرکانسِهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۵ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۴ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۳ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۲ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

در شکل ۱ نمودار نسیب جرمی محدود توسط ورق نسبت به فرکانس اسپین طول از ۵۰۰ کیلوسیلوستر بین نسبت طول به ضخامت ورق در فرکانسَهای مختلف تزریقی برای در این شکل به بررسی نسبت ضخامت ورق و فرکانس قابلیت رفت و در محدودات نسبت طول به محدودات مطلوب می‌باشد.

