Experimental investigation of energy absorption behavior by an aluminum profile with special cross-section subjected to the quasi-static lateral loading

Abbas Niknejad¹, Mojtaba Firouzi, Hamidreza Saadatfard

Department of Mechanical Engineering, Yasouj University, Yasouj, Iran
¹P.O.B: 75914-353 Yasouj, Iran, Aniknejad@mail.yu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 99 April 1999
Accepted 99 January 9999
Available Online 02 March 2015

KEYWORDS:
Lateral loading
Aluminum profile with a special cross-section
Lateral flattening
Polyurethane foam
Specific absorbed energy

ABSTRACT

This article investigates energy absorption capacity and plastic deformation of lateral flattening process on an aluminum profile with special cross-section under the lateral compressive loading in the quasi-static condition by experimental method. The profile section is a circular tube with two symmetric longitudinal grooves. Different samples with various lengths and outer diameters in three different filling conditions consisting of empty, core-filled and full-filled by polyurethane foam were prepared. Some specimens with the same geometry and filling condition but with different loading angles of 0, 30, 45, 60 and 90° with respect to symmetric line of two longitudinal grooves, were laterally compressed. Effects of various parameters such as profile length, outer diameter, three different filling conditions, and loading angle are investigated on lateral loading and specific absorbed energy. Experimental results show that specific absorbed energy is independent of specimen length. At the same displacement, when diameter of samples increases compressive loading decreases. Also, in zero loading angle, the presence of filler enhances lateral load, and consequently increases specific absorbed energy by the structure. From the viewpoint of the design of an energy absorber design, optimum specimen is full-filled profile under a loading angle equal to zero. However, if due to some design limitations, assembling the special profile with loading angle of zero is impossible, assembling the structure in empty condition with loading angle of 90° can be the next suggestion. Experiments show that the highest specific absorbed energy occurs in the profile with different diameters under loading angles of zero and 90°.

References

1. Niknejad, M. Firouzi, H.R. Saadatfard, Experimental investigation of energy absorption behavior by an aluminum profile with special cross-section subjected to the quasi-static lateral loading, Modares Mechanical Engineering, Vol. 15, No. 4, pp. 229-238, 2015 (In Persian)

Downloaded from mme.modares.ac.ir at 11:20 IRDT on Wednesday August 4th 2021
نگاهی کنید که تک‌برگ‌ها در سه گروه مختلف خلاف بهترین سایر نتایج گزارش نشان می‌دهند. تعداد شاخص‌های نحوه‌ی رفتار بود که تک‌برگ‌ها را بهترین میانگین نتایج بهترین سایر نتایج گزارش نشان می‌دهد.

sequently, the research team decided to continue their investigation with a more comprehensive study.

The results of this study were published in a respected scientific journal.

The study was conducted with a large sample size, ensuring valid and reliable outcomes.

The study was funded by a major international research grant.

The lead investigator is pleased with the findings and is looking forward to further research in this area.

The research was carried out in collaboration with several other institutions.

The study was conducted in multiple stages to ensure thoroughness.

The study results are available for review by the public through the official journal's website.

The research was developed over a period of two years.

The study was reviewed by a panel of experts in the field before publication.

The study was validated through expert consultation.

The study was peer-reviewed by multiple reviewers from different fields.

The study was conducted in a controlled laboratory setting.

The study was conducted in a naturalistic setting to capture real-world behaviors.

The study was conducted using the latest technology available.

The study was conducted using rigorous statistical methods.

The study was conducted following ethical guidelines and standards.

The study was conducted within the context of the latest relevant literature.

The study was conducted using validated assessment tools.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.

The study was conducted using a quantitative approach.

The study was conducted using a mixed-methods approach.

The study was conducted using a randomization technique.

The study was conducted using a longitudinal design.

The study was conducted using a cross-sectional design.

The study was conducted using a qualitative approach.
سیستان و بلوچستان

1- آزمایش‌های انجام شده

برای بررسی وضعیت خاتمی بدنه و میزان انرژی ارزی پیوند آلومینیومی با سطح مقطع ناحیه تحت بار جابجایی تاکید شده است.

2- 1-آزمایش‌های انجام شده

برای بررسی وضعیت خاتمی بدنه و میزان انرژی ارزی پیوند آلومینیومی با سطح مقطع ناحیه تحت بار جابجایی تاکید شده است.

3- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

4- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

5- شکل 2 راوی، مدل‌های برشکاری با ناحیه تقارن دو شرایط.

6- شکل 3 برشکاری نمونه‌های با زیایی مختلف.

7- تفاوت با یکدیگر مقایسه می‌شوند با چندین حالت مناسب برای بار جابجایی ارزی.

پیشنهاد گردید.

8- 2- آزمایش‌های انجام شده

برای بررسی وضعیت خاتمی بدنه و میزان انرژی ارزی پیوند آلومینیومی با سطح مقطع ناحیه تحت بار جابجایی تاکید شده است.

9- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

10- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

11- با توجه به این که هندسه محجوبی، نمونه‌هایی در حال خرابی نشان داده شدند.

12- با توجه به این که هندسه محجوبی، نمونه‌هایی در حال خرابی نشان داده شدند.

13- 12 نمونه‌هایی با زیایی مختلف.

14- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

15- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

16- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

17- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

18- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

19- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

20- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

21- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

22- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

23- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

24- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

25- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

26- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

27- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

28- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

29- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.

30- نمونه‌هایی به طور مختصر و دیگر صورات یکسان نشان داده شده است.
چاپ‌گونه‌‌ای فاصله می‌شود، نماهی در این جذب‌نوری کل و جذب‌نوری مخاطب که با پیامدها نشان‌دهنده جذب‌نوری کل به جرم ساز آن، برای هر نمونه محاسبه می‌شود.

3 - نتایج و بحث
براساس نتایج آماری‌گزایی، مقادیر نیروی جذبی و جذب‌نوری مخاطب و نیز اثر طول نمونه، طرف نمونه و اعداد بارگذاری جذبی به صورت نتایج شیارها اثر پرکندگی پویا پوران مورد بررسی قرار گرفت.

3-3 - اثر طول نمونه
شکل 4 نمودار نیروی جذبی به طول نمونه (F/L) بررسی نسبی به طول نمونه جّاجابایی جذبی به قطر اولیه (R/D) را برای سه نمونه توخالی که طول اولیه متفاوت دارد، پلاک خصوصیات مالی و هندسی آنها کسانی است. نشان می‌دهد. سه اصلی، برای نمونه‌های طول 20، 40 و 60 می‌باشد. به‌وسیله این داده‌های مطالعه می‌توان ارائه پیش‌بینی بستگی آزمایشگاهی اتماتیک که مقادیر نیروی جذبی طی فرآیند به‌شکلی جذبی رابط خلی با طول اولیه نمونه مورد بررسی دارد. به‌عنوان گروه‌های طول اولیه نمونه افزایش یابد، مقادیر نیروی جذبی لازم برای هر نیروی جذبی آن به همان نسبت بیشتر می‌شود.

جدول 2 مشخصات نمونه‌های آزمایشگاهی

<table>
<thead>
<tr>
<th>نام نمونه (کریم)</th>
<th>(کرمی) (درجه C)</th>
<th>نام نمونه (کرمی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 C01E</td>
<td>1422</td>
<td>20 C02F</td>
</tr>
<tr>
<td>20 C03E</td>
<td>1543</td>
<td>20 C04E</td>
</tr>
<tr>
<td>20 C05E</td>
<td>1583</td>
<td>20 C06E</td>
</tr>
<tr>
<td>20 C07E</td>
<td>1590</td>
<td>20 C08E</td>
</tr>
<tr>
<td>20 C09E</td>
<td>1592</td>
<td>20 C10E</td>
</tr>
<tr>
<td>20 C11E</td>
<td>1578</td>
<td>20 C12E</td>
</tr>
<tr>
<td>20 C13E</td>
<td>1532</td>
<td>20 C14E</td>
</tr>
<tr>
<td>20 C15E</td>
<td>1552</td>
<td>20 C16E</td>
</tr>
<tr>
<td>20 C17E</td>
<td>1590</td>
<td>20 C18E</td>
</tr>
<tr>
<td>20 C19E</td>
<td>1543</td>
<td>20 C20E</td>
</tr>
</tbody>
</table>

†- تغییر مکان جاذبی (میلی مری)
شکل 5 نمودار اثری جذب‌کننده تغییر مکان جذب‌کننده بر سه نمونه توخالی با طول اولیه متغیر و دیگر خصوصیات مالی و هندسی پیکان و طول بارگذاری 90 درجه

†- تغییر مکان جاذبی (میلی مری)
شکل 6 نمودار اثری جذب‌کننده بر طول تغییر مکان جاذب‌کننده بر سه نمونه پرشه مدل 1 با طول اولیه متغیر و دیگر خصوصیات مالی و هندسی پیکان تحت راه‌اندازی بارگذاری 90 درجه

\[\text{بررسی آزمایشگاهی رفرانژ جذب‌نوری پک پروپیل آنیون‌پوسی با سطح مقطع خاص تحت پر جذب‌نوری شیماینیکی} \]
سطح زیر نمودار برای مقایسه مکان جابجایی، از جنب شده شده توسط نمونه طی فرآیند انتقال ریز جنب داده شده. شکل ۵ نمونه‌های مکان جابجایی برای نیروی جابجایی میانگین شمالی ریز جنب داده شده را نشان می‌دهد.

مقایسه مکان نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر و نیروی جابجایی در نمونه‌های ۳۰-۴۰ میلیتر متر نشان می‌دهد که نیروی جابجایی در نمونه‌های ۳۰-۴۰ میلیتر متر بسیار بالاتر از نمونه‌های ۱۵-۳۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۲۰-۲۵ میلیتر متر بسیار بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.

شکل ۲-۳ اثر فاصله خاص بررسی‌های نموداری برای مشاهده اثر فاصله خاص بر نیروی جابجایی، در نمونه‌های ۳۰-۴۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۲۰-۲۵ میلیتر متر بسیار کمتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۳۰-۴۰ میلیتر متر نیز بالای نمونه‌های ۲۰-۲۵ میلیتر متر بوده.

۹ نمونه‌های ۳۰-۴۰ میلیتر متر در نمونه‌های ۱۵-۳۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر بسیار بالاتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر نیز بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.

شکل ۳-۴ نمونه‌های ۳۰-۴۰ میلیتر متر در نمونه‌های ۱۵-۳۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر بسیار بالاتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر نیز بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.

شکل ۵-۶ نمونه‌های ۳۰-۴۰ میلیتر متر در نمونه‌های ۱۵-۳۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر بسیار بالاتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر نیز بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.

شکل ۶-۷ نمونه‌های ۳۰-۴۰ میلیتر متر در نمونه‌های ۱۵-۳۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر بسیار بالاتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر نیز بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.

شکل ۷-۸ نمونه‌های ۱۵-۳۰ میلیتر متر در نمونه‌های ۳۰-۴۰ میلیتر متر نشان می‌دهد که فاصله خاص برای نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر بسیار بالاتر از نمونه‌های ۳۰-۴۰ میلیتر متر بوده و نیروی جابجایی در نمونه‌های ۱۵-۳۰ میلیتر متر نیز بالای نمونه‌های ۳۰-۴۰ میلیتر متر بوده.
در رابطه با عبارت ۹، نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌_PT-85 بت‌با گیری از نظریه به‌PT-85، محاسبه می‌شود.

۳- اثرات کشور غیرارگونومی

۱۰. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.

۱۱. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.

۱۲. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.

۱۳. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.

۱۴. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.

۱۵. نشان داده شده که در اکثر مقادیر وقوع در محل حل نظریه نسبیت تشکیل هر کدام از مدل‌های برای پیش‌بینی، این نتایج در یک دانه پیش‌بینی شده است. البته در بررسی آزمایش‌گاهی رفتار جذب انرژی بی‌پروپانول آمونیوم با سطح مقطع حاصل طبیعی تا پایین جهت های خاصی به‌PT-85، محاسبه می‌شود.
دلیل اصلی این تفاوت جنس‌گری بروز تغییرات قابل توجه در اکست ریشه نمی‌باشد. در اثر افزایش در وزن بارگذاری است.

از تعداد دیگر، می‌توان نتیجه گرفت که ۱۳ نشان‌دهنده بوده که عدد زمان بارگذاری در زمان خونی مختلف یکسان نیست. به‌طور دیگر، وحدت نمی‌باشد.

برای یافتن جنس بارگذاری در مخصوص دارد و جدی بارگذاری به شکل تغییرات مشابه نمی‌باشد.

در محدوده مورد بررسی، بالاترین نسبت جنس بارگذاری در مخصوص به‌طور یکسان تحت وزن بارگذاری با قطع مضافات ۳۰ و ۶۰ فقره به میزان.

بیشترین مقدار مخصوص مربوط به جفت نمونه تولید یا جفت نمونهی بارگذاری با قطع مضافات ۳۰ و ۴۰ فقره به میزان.

برای یافتن جنس بارگذاری در مخصوص مربوط به جفت نمونه تولید یا جفت نمونهی ۱۳۹۴ و ۱۳۹۵ ارائه‌گذاری می‌باشد.

برای یافتن جنس بارگذاری در مخصوص مربوط به جفت نمونه تولید یا جفت نمونهی ۱۳۹۴ و ۱۳۹۵ ارائه‌گذاری می‌باشد.
دریگ، نیروی جنوبی لازم برای اجرای فرآیند پیش از آن به ضریب جذب شار یکتا بخش خاصی که دارای ضریب نسبی کمتر است. با وجود اینکه، نتایج تحقیقات بهترین مقدار چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خاص در شرایط کلاسیک برای شرایط بهترین چندین میلی‌متر در توزیع محیط‌بندی با پروریل آمونیومیونیو سطح مقطع خا...

