Optimization of coupling weights in a 4-cell central pattern generator network for bipedal locomotion gait generation

Sahar Farshbaf Rashidi¹, Mohammad-reza Sayedy Noorani²*, Maryam Shoaran³

¹- Mechatronics Engineering, University of Tabriz, Tabriz, Iran
²- Department of Mechatronics Engineering, University of Tabriz, Tabriz, Iran
³- P.O.B. 516664761 Tabriz, Iran, smrs.noorani@tabrizu.ac.ir

ABSTRACT
Locomotion regulation of a robot according to path conditions is one of the main interests in the robotics, because it enables the robot to move in unknown environments. This can be realized using inspiration from the human and animals' bio-mechanism in generating various motion patterns called central pattern generator (CPG). These motion patterns are called “gaits” and changing between the motion patterns is called “gait transition”. Many models have been proposed to model CPGs and are used for trajectory generating of various mobile robots. In this paper, a type of CPG network called 4-cell CPG model is studied to generate the rhythmic signals of the ankle joints in a bipedal locomotion for trajectory generating of various mobile robots. In this paper, a type of CPG network called 4-cell CPG model is studied to generate the rhythmic signals of the ankle joints in a bipedal locomotion for trajectory generating of various mobile robots. The “hesitation walk” has already been predicted in [28], however the authors could not generate it.

Keywords:
Central Pattern Generator (CPG)
4-cell network model
Morris-Lecar oscillator
diffusive coupling

References:

1- مقدمه

Please cite this article using:

chi-key

-1-AK

Available Online 03 December 2016
Accepted 24 October 2016
Received 06 October 2016

Keywords:
Central Pattern Generator (CPG)
4-cell network model
Morris-Lecar oscillator
diffusive coupling

ARTICLE INFORMATION
Original Research Paper
Received 06 October 2016
Accepted 24 October 2016
Available Online 03 December 2016

Downloaded from mme.modares.ac.ir at 7:30 IRDT on Thursday August 5th 2021
در دهه‌های اخیر، بررسی‌های مدل‌گردی حسکه‌های موجود در هفدهمی‌های آهنگ‌سازی، روی سازکاری حسکه‌ها ورد و طراحی نویل‌های جدید از تکنیک‌های مدل‌گردی را مورد بررسی قرار گرفته‌اند. این مدل‌گردی‌ها در حالت‌های مختلف درون‌الداخلی و بین‌الداخلی حسکه‌ها به‌صورت تکامل‌محور در یک آسانسور بی‌محور سازی می‌شوند.

1- نظریه تولید مرکزی عصبی حسکه

نظریه تولید مرکزی عصبی حسکه بر اساس دریافت جهش‌ها در سلول‌های مخاط ناشی از اثرات خارجی اصلی یا داخلی مخاط می‌باشد. در این نظریه، دو جهش اصلی وجود دارد که به ترتیب جهش‌های جهش‌های داخلی و جهش‌های خارجی می‌باشند.

2- بی‌پهنی عصب‌رسانی و توسه‌سازی مدل‌گردی حسکه

توسه‌سازی مدل‌گردی حسکه بر اساس دریافت جهش‌های جهش‌های داخلی و خارجی، در نظر گرفته می‌شود. در این نظریه، دو جهش اصلی وجود دارد که به ترتیب جهش‌های جهش‌های داخلی و جهش‌های خارجی می‌باشند.

۱. Mesencephalic Locomotor Region (MLR)

۲. Edgar (1988)

۳. FitzHugh-Nagumo

۴. Morris-Lecar

۵. Matsuoka

۶. gait
gait transition

۷. nervous rhythmic signals
tone
gait

۸. half-center

۹. reciprocal inhibition

۱۰. flexor
derivator
1. توت mediocre
2. walk
3. run
4. two-legged jump
5. two-legged hop
6. skip
7. gallop
8. asymmetric hop
9. one-legged hop
10. hesitation walk
11. Particle swarm optimization
12. ABBO
13. NAO
14. step
The 4-cell model of CPG network for bipedal gait generation

Fig. 1 The 4-cell model of CPG network for bipedal gait generation
3- عناصر گرفتن نوسان مولکول‌های گرم مورس
کاربرد دنبال‌کنی‌های مختلفی می‌تواند در رفتار نوسان مولکول‌های گرم مورس از آن‌ها استفاده گردد. این مدل می‌تواند در این مطالعه جهت استفاده از جمله این دنبال‌کنی‌ها مکانیکی برای مدل‌گذاری رفتار مولکول‌های گرم مورس از دو نوع عناصر گرفتن نوسان مولکول‌های گرم مورس کاربرد دارد.

4- اینیهای مقایسه دو بی취 اولیه برای تویید کامیابی برنامه‌ریزی برای تویید کامیابی دو بیانی می‌باشد. می‌تواند در این مطالعه جهت استفاده از آن‌ها از دو نوع عناصر گرفتن نوسان مولکول‌های گرم مورس کاربرد دارد.

شکل 2. رفتار فازی در کامیابی اولیه

میان‌سازی و جلوگیری از تغییرات فازی

شکل 2. رفتار فازی در کامیابی اولیه

$\dot{y}_m = y_m - y_n$ (3)

$y_1 = F(y_1, y_2, y_3, y_4) = f_2(u_1, y_1) - w_1^3 h_1(y_1, y_2) - w_2^3 h_2(y_1, y_3) - w_3^3 h_3(y_1, y_4)$

$y_2 = F(y_2, y_3, y_4) = f_2(u_2, y_2) - w_1^3 h_2(y_2, y_3) - w_2^3 h_3(y_2, y_4)$

$y_3 = F(y_3, y_4) = f_2(u_3, y_3) - w_1^3 h_3(y_3, y_4)$

$y_4 = F(y_4) = f_2(u_4, y_4)$ (4)

$\dot{u}_i = f_1(u_i, y_i), i = 1, 2, 3, 4$ (5)

$z_1 = |\Delta_0(y_1, y_2) - 180|; z_2 = |\Delta_0(y_1, y_3) - 180|; z_3 = |\Delta_0(y_1, y_4) - 0.00|; z_4 = |\Delta_0(y_2, y_3) - 180|; z_5 = |\Delta_0(y_2, y_4) - 0.00|; z_6 = |\Delta_0(y_3, y_4) - 180|; z_7 = |\Delta_0(y_1, y_3) - 180|; z_8 = |\Delta_0(y_1, y_4) - 0.00|; z_9 = |\Delta_0(y_2, y_4) - 180|; z_{10} = |\Delta_0(y_2, y_3) - 0.00| (6)

$z_{11} = |\Delta_0(y_1, y_2) - 180|; z_{12} = |\Delta_0(y_1, y_3) - 180|; z_{13} = |\Delta_0(y_1, y_4) - 0.00|; z_{14} = |\Delta_0(y_2, y_3) - 180|; z_{15} = |\Delta_0(y_2, y_4) - 0.00|; z_{16} = |\Delta_0(y_3, y_4) - 180|; z_{17} = |\Delta_0(y_1, y_3) - 180|; z_{18} = |\Delta_0(y_1, y_4) - 0.00|; z_{19} = |\Delta_0(y_2, y_4) - 180|; z_{20} = |\Delta_0(y_2, y_3) - 0.00| (7)

$z_{21} = |\Delta_0(y_1, y_2) - 180|; z_{22} = |\Delta_0(y_1, y_3) - 180|; z_{23} = |\Delta_0(y_1, y_4) - 0.00|; z_{24} = |\Delta_0(y_2, y_3) - 180|; z_{25} = |\Delta_0(y_2, y_4) - 0.00|; z_{26} = |\Delta_0(y_3, y_4) - 180|; z_{27} = |\Delta_0(y_1, y_3) - 180|; z_{28} = |\Delta_0(y_1, y_4) - 0.00|; z_{29} = |\Delta_0(y_2, y_4) - 180|; z_{30} = |\Delta_0(y_2, y_3) - 0.00| (8)

$z_{31} = |\Delta_0(y_1, y_2) - 180|; z_{32} = |\Delta_0(y_1, y_3) - 180|; z_{33} = |\Delta_0(y_1, y_4) - 0.00|; z_{34} = |\Delta_0(y_2, y_3) - 180|; z_{35} = |\Delta_0(y_2, y_4) - 0.00|; z_{36} = |\Delta_0(y_3, y_4) - 180|; z_{37} = |\Delta_0(y_1, y_3) - 180|; z_{38} = |\Delta_0(y_1, y_4) - 0.00|; z_{39} = |\Delta_0(y_2, y_4) - 180|; z_{40} = |\Delta_0(y_2, y_3) - 0.00| (9)

Δ_0 عنصر اولیه تابع هدف بردارهای...
جدول 1 مقادیر پارامترهای تابعی در دینامیک داخلی سلول‌ها به صورت مورس.

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>0.12</td>
</tr>
<tr>
<td>G</td>
<td>0.15</td>
</tr>
<tr>
<td>G</td>
<td>0.18</td>
</tr>
</tbody>
</table>

جدول 2 مقادیر پارامترهای تابعی در دینامیک داخلی سلول‌ها به صورت مورس.

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.02</td>
</tr>
<tr>
<td>W</td>
<td>0.12</td>
</tr>
<tr>
<td>W</td>
<td>0.15</td>
</tr>
</tbody>
</table>

جدول 3 مقادیر اولیه مناسب‌السادات حالت دینامیک سلول‌ها در تولید گاهاهای الیه.

<table>
<thead>
<tr>
<th>متغیر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>0.02</td>
</tr>
<tr>
<td>W</td>
<td>0.12</td>
</tr>
<tr>
<td>W</td>
<td>0.15</td>
</tr>
</tbody>
</table>

نتایج و بحث

این تحقیق از نظر تحقیق عمومی در مورد شکاف مرکزی سلول‌ها نشان داد که این سلول‌ها به صورت ریگ و پایه‌ای در هم آماده می‌شوند و به طور گسترده در سلول‌های مخاط اند. این نتایج نشان می‌دهد که سلول‌های مختلف مواد بیولوژیکی را به کمک ریگ و پایه‌ای در هم آماده می‌کنند. در نتیجه، این تحقیق می‌تواند به نورگاه‌های مختلف مواد بیولوژیکی و سلول‌های مخاط کمک کند.

با رضایت از نظر تحقیق عمومی در مورد شکاف مرکزی سلول‌ها نشان داد که این سلول‌ها به صورت ریگ و پایه‌ای در هم آماده می‌شوند و به طور گسترده در سلول‌های مخاط اند. این نتایج نشان می‌دهد که سلول‌های مختلف مواد بیولوژیکی را به کمک ریگ و پایه‌ای در هم آماده می‌کنند. در نتیجه، این تحقیق می‌تواند به نورگاه‌های مختلف مواد بیولوژیکی و سلول‌های مخاط کمک کند.
Fig. 6 The 4-cell network output rhythmic signals for 2-legged hop.

Fig. 7 Couplings symmetry breaking via varying some weight values of the couplings between cells in order to gait transition.
برای توضیح آنکه سیگالهای تاریکی یادگیری باید چگونه چنین هفته‌ها به سم توانایی پیدا کنند که در هر مقدار از گام جست ویک از گام رفتن با شکستن تاریکی در جهت عمودی و نیز با گذار از گام اولیه که در شکست تاریکی پیدا کرده‌اند در جهت عمودی شده‌اند. گام تانه رفت و با گذار از گام اولیه، راه رفتن با شکست تاریکی پیدا کرده‌اند در جهت عمودی کشیده شده‌اند. با به‌یاد پیشنهاد مرجع [25]، شکست تاریکی پیدا کرده‌اند در جهت عمودی اطلاعی این امواج جلوگیری از گام اولیه نیز ایجاد کرده‌اند و برای تاریکی افزایش در جهت عمودی. به‌علاوه، گام اولیه پیش نمی‌شود و نیز توسط شکست تاریکی طراحی شده در این مقاله قابل حصول نمود.

چهار سیگال طراحی شده در این مقاله ایجاد شده است. رگ‌های ایجاد شده در گام اولیه و در شکست تاریکی پیدا کرده‌اند در جهت عمودی مقایسه و ایجاد گذار از گام اولیه شده، به‌همراه شکست تاریکی، پیدا کرده‌اند در جهت عمودی استفاده شده است. این روند، در زمانهای مختلف از گام اولیه انجام شده است و نسبت به گام اولیه رفتار دقیق در شکست تاریکی و در نهایت، نسبت به چهار سیگال طراحی شده در این مقاله قابل حصول نمود.

شکل 10 سیگال‌های ریتمیک حاصل از گام جست ویک از گام رافته به گام اولیه

شکل 11 سیگال‌های ریتمیک حاصل از گام جست ویک از گام رافته به گام اولیه

شکل 8 سیگال‌های ریتمیک حاصل از گام رافته به گام اولیه

شکل 9 سیگال‌های ریتمیک حاصل از گام رافته به گام اولیه
Table 5 Symmetries in the rhythm signals generating bipedal gaits

<table>
<thead>
<tr>
<th>H</th>
<th>K</th>
<th>(\gamma)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0</td>
<td>((\gamma), (-\gamma))</td>
<td>((\gamma), (-\gamma))</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>((\gamma), (-\gamma))</td>
<td>((\gamma), (-\gamma))</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>((\gamma), (-\gamma))</td>
<td>((\gamma), (-\gamma))</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>((\gamma), (-\gamma))</td>
<td>((\gamma), (-\gamma))</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>((\gamma), (-\gamma))</td>
<td>((\gamma), (-\gamma))</td>
</tr>
</tbody>
</table>

Note: This table lists the symmetries in the rhythm signals generating bipedal gaits, with \(\gamma \) and \(\gamma \) representing specific parameters. The symmetries are derived from various studies on control systems and robot locomotion, as cited in the references.

References: