The effect of secondary flows created by curved micromixers with various geometries on mixing of non-Newtonian fluids

Sima Baheri Islami1,*, Marzieh Khezerloo2, Reza Gharraei3

1, 2- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran.
3- Mechanical Engineering Department, Azarbaijan Shahid Madani University, Tabriz, Iran.
* P.O.B. 51666-14766, Tabriz, Iran, baheri@tabrizu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 10 December 2015
Accepted 30 March 2016
Available Online 23 May 2016

Abstract

Since the majority of fluids in engineering and biologic applications are non-Newtonian, the study on mixing of non-Newtonian fluids is very important. Secondary flows are used in curved micromixers to improve the mixing of fluids. In this study, a numerical study was performed on the mixing of non-Newtonian fluids in curved micromixers using Open source CFD code of OpenFOAM. The flow was assumed three-dimensional, steady and incompressible and Reynolds numbers were between 0.1-300. Also, water and CMC solution were used for simulation of Newtonian and non-Newtonian fluid flows, respectively. The effect of Reynolds number, power-law viscosity parameters and micromixer geometry on mixing index and non-dimensional pressure drop was studied and results were compared with those of the straight channel micromixer. The results showed that the mixing index decreased by decreasing the power law index. The mixing index was high for shear thinning flows in micromixers with sharp turns. Also, by increasing the Reynolds number, and therefore velocity, centrifugal force effects increased and mixing improved. Simultaneous investigation of mixing index and pressure drop showed that, for low Reynolds numbers and small power law indexes micromixer-b had better performance.

چکیده

از آن جایی که به شیئات در کاربردهای مهندسی و پیوستگی بیولوژیکی شرکت کنند، مطالعه اختلال سیال فيزیکی در سیال‌های غیرنویزی از جذابیت توجه بیشته‌ای برای وید باعث می‌شود. در این مطالعه اختلال سیال‌های غیرنویزی در میکرومبیکره‌های متنوعی به صورت عمودی و با استفاده از دکتری برای این ترسیم تحقیقاتی با ضرایب جریان مختلف، پایه و ترکیبی از یک التعیین از بین و یک تعیین از مطالعه آب به سیال‌های غیرنویزی و حلول آب کوکسکی نیز انتخاب شده. با اصلاح مقاومت در سیال‌های غیرنویزی اختلال شدید با دو نوع یک شبکه کسب وجود دارد و به تأخیر نسبی دردسری رکورد شده. این بررسی نشان داد که برای روانه‌های غیرنویزی، ساختاری توانایی کوکسکی، میکرومبیکره‌ها عملکرد بهتری دارند.

1. مقدمه

در دو دهم اخیر تکنولوژی آزمایشگاه‌های تحقیقاتی سبب تولید میکروسیستم‌ها به شیئات در کاربردهای شیمیایی، بیولوژیکی و کاربردهای پزشکی شده است. با استفاده از فناوری‌های کاربردی که در سیال‌های غیرنویزی از تأثیرات برای بهبود اعمال برای اختلال توانایی اجرای خارجی داده، این انرژی می‌تواند بسیار میانگین مصرف بسیار کم‌برداشته وارد.

Please cite this article using:
The text seems to be a scientific document, possibly related to fluid dynamics or another scientific field. It contains mathematical equations and some text in Persian. Due to the complexity and specialized nature of the content, a direct translation is not possible without specialized knowledge in the field. The document appears to discuss fluid flow, equations, and possibly residence time distributions.

Detailed analysis and interpretation of the content would be necessary to provide a coherent summary or translation. However, without the ability to analyze or interpret the technical terms and equations, a direct transcription is not feasible.
Flow parameters of non-Newtonian fluids in terms of the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M )</td>
<td>1 - ( \frac{\sigma}{\sigma_0} )</td>
</tr>
<tr>
<td>( \sigma )</td>
<td>( \frac{1}{k} \sum (c_i - 1)^2 )</td>
</tr>
<tr>
<td>( \sigma_0 )</td>
<td>( \xi (1 - \epsilon) )</td>
</tr>
</tbody>
</table>

\( M \) is the Modified Reynolds Number, \( \sigma \) is the wall shear stress, \( \sigma_0 \) is the yield stress, \( k \) is the number of terms in the series expansion, \( c_i \) are the coefficients, and \( \epsilon \) is the non-Newtonian parameter.

For self-filtered central differencing (SFCD) and Simple FOAM, the Reynolds number is given by:

\[ Re = \frac{\mu U_m n^2 D^2}{m (24 + 4Un) L} \]

where \( \mu \) is the dynamic viscosity, \( U_m \) is the mean velocity, \( n \) is the number of terms in the series expansion, \( D \) is the diameter, \( L \) is the length, and \( Un \) is the non-dimensional velocity.

For other methods, the Reynolds number is given by:

\[ Re = \frac{\mu U_m n^2 D^2}{m (24 + 4Un) L} \]

where the parameters are defined as above.

In the table, \( \mu \) is the dynamic viscosity, \( U_m \) is the mean velocity, \( n \) is the number of terms in the series expansion, \( D \) is the diameter, \( L \) is the length, and \( Un \) is the non-dimensional velocity.

Table 1: Flow parameters of non-Newtonian fluids in terms of the percentage of CMC (19,20)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( D )</td>
<td>1.00</td>
</tr>
<tr>
<td>( \mu )</td>
<td>0.009902</td>
</tr>
<tr>
<td>( n )</td>
<td>0.93</td>
</tr>
<tr>
<td>( D )</td>
<td>0.0252</td>
</tr>
<tr>
<td>( \mu )</td>
<td>0.85</td>
</tr>
<tr>
<td>( D )</td>
<td>0.097</td>
</tr>
<tr>
<td>( \mu )</td>
<td>0.75</td>
</tr>
<tr>
<td>( D )</td>
<td>0.067</td>
</tr>
<tr>
<td>( \mu )</td>
<td>0.6</td>
</tr>
<tr>
<td>( D )</td>
<td>2.75</td>
</tr>
<tr>
<td>( \mu )</td>
<td>0.49</td>
</tr>
<tr>
<td>( D )</td>
<td>0.7</td>
</tr>
</tbody>
</table>

In the table, the parameters are defined as above.

In the equation, \( M \) is the Modified Reynolds Number, \( \sigma \) is the wall shear stress, \( \sigma_0 \) is the yield stress, \( k \) is the number of terms in the series expansion, \( c_i \) are the coefficients, and \( \epsilon \) is the non-Newtonian parameter.

The Reynolds number is given by:

\[ Re = \frac{\mu U_m n^2 D^2}{m (24 + 4Un) L} \]

where \( \mu \) is the dynamic viscosity, \( U_m \) is the mean velocity, \( n \) is the number of terms in the series expansion, \( D \) is the diameter, \( L \) is the length, and \( Un \) is the non-dimensional velocity.

The table shows the values for the different parameters.

In the equation, \( M \) is the Modified Reynolds Number, \( \sigma \) is the wall shear stress, \( \sigma_0 \) is the yield stress, \( k \) is the number of terms in the series expansion, \( c_i \) are the coefficients, and \( \epsilon \) is the non-Newtonian parameter.

The Reynolds number is given by:

\[ Re = \frac{\mu U_m n^2 D^2}{m (24 + 4Un) L} \]

where \( \mu \) is the dynamic viscosity, \( U_m \) is the mean velocity, \( n \) is the number of terms in the series expansion, \( D \) is the diameter, \( L \) is the length, and \( Un \) is the non-dimensional velocity.

The table shows the values for the different parameters.
Fig. 1 Schematic diagram of the curved micromixers at y=0, (a) micromixer-a, (b) micromixer-b, (c) micromixer-c

Fig. 2 Dimensionless velocity for 90° first turn of micromixer-a, for different grids

Fig. 3 Comparison of the results of present study and the results of Ref. [13]
At the exit section of micromixer-a, Re=100

Fig. 5 Variation of average apparent viscosity versus power-law index, exit section of micromixer-a, Re=100

Fig. 4 Comparison of the results of present study and the results of Ref. [18]
مختلف میکرومیکرات انتخابی بر روی آن دسته است. همان‌گونه که یکی از این
شده یک سیال آبی بر روی آن برای برخی، سیال مشخص شرایط و
ضریب سرگاری سیال مناسب در شرایط 12 لرج طراحی در مقطع-
B را برای میکرومیکرات مختلف مانند مایع، مایع مایع به صورت
مایع مایع کردن یک سیال مشخص (سیال مشخص قانون قانون و
شدید با افزایش نیروی، لرج از بیشتر کاهش می‌یابد به این
دلیل در هر مقطع وجود داشته است. بیشتر لرج طراحی در تزیکی
مکرو میکرومیکرات ا состояت. سیال مایع مایع برای آن از
قامت‌های اختصاصی دسته و به تدریج تغییر می‌دهد و با تغییر
تکانه‌ای مسرسی مشابه نمی‌شوید، در نتیجه نیروی نش باعث
مایع مایع کاهش می‌گردد. سیال کمتر است. که باعث می‌شود لرج طراحی در این میکرومیکرات بیشتر
از سیار میکرومیکرات مشابه به‌صورت نیروی گریز از مرکز اندیس توانآبادی
جدور به دریای تنها به هدف.

شكل 13 رونتیسیت در مقطع-
B میکرومیکرات مختلف را نشان
می‌دهد مشاهده می‌شود که در مجاورت ایجاد شده در میکرومیکرات
بیشتر ضعیف‌تر از در میکرومیکرات دیگر است به دلیل پیچه‌ای موجود در
میکرومیکرات -B، برای به‌دست آوردن و ساختار توانی به دست
گردیده‌ای این‌جایی است. سیال به وابسته به سیال در مقطع انرژی به
دست انجام داده برای ردیابی نیروی بخار
شکل 14 تغییرات در مقطع
B میکرومیکرات مختلف برای
سیال‌های مشترک توانی 0.93 و 0.6 نیروی مایع-
B میکرومیکرات- ب مشترک است
بیشتر به میکرومیکرات- B مشترک آب
می‌دهد بخشی به‌طور میانگین به‌گونه‌ای می‌گردد به آن تغییر در
میکرومیکرات -B، برای به‌دست آوردن و ساختار توانی به دست
می‌گردد. شکل 9 رونتیسیت در مقطع-
B میکرومیکرات -ب شکل توانی 0.75
میکرومیکرات- A، افزایش قانون مایع

Fig. 6 Variation of the mixing index versus Reynolds number for various power-law indexes, exit section of straight micromixer

Fig. 8 Mass fraction distribution on Plane-A, micromixer-a, n=0.85

Fig. 9 The vorticity (s-1) on Plane-B of micromixer-b, n=0.75

Fig. 7 Variation of the mixing index versus Reynolds number for various power-law indexes, exit section of micromixer-a

3-6 بیان‌های میکرومیکرات
در میکرومیکرات بی‌غیرفجال، هندسه میکرومیکرات فضایی به‌وجود
اختلال مناسب از این پدیده در این سیال به دست آمده برای مقایسه هندسه

Fig. 11 The vorticity (s⁻¹) on Plane-B of micromixer-b, Re=100

Fig. 12 Apparent viscosity (Pa.s) on Plane-B of various micromixers, Re=100, n=0.75

Fig. 13 The vorticity (s⁻¹) on Plane-B of various micromixers, Re=100, n=0.75

Fig. 10 Mass fraction distribution on Plane-A, micromixer-a, Re=50

Fig. 14 Variation of the mixing index at the exit of different micromixers. (a) n=0.6, (b) n=0.93

Fig. 15 Mass fraction distribution on Plane-A, micromixer-a, Re=50

Fig. 16 Vorticity (s⁻¹) on Plane-B of micromixer-b, Re=100

Fig. 17 Apparent viscosity (Pa.s) on Plane-B of various micromixers, Re=100, n=0.75

Fig. 18 The vorticity (s⁻¹) on Plane-B of various micromixers, Re=100, n=0.75

Fig. 19 Variation of the mixing index at the exit of different micromixers. (a) n=0.6, (b) n=0.93
تبیع آن، زمان اقامت سیال در میکرومیکرها مختلف یکسان است، به همین دلیل برای سیال نیوتنی در هر نوع میکرومیکر به دوی اخلاقیات پیکانی رسم می‌شود. در حالی که در میکرومیکرها مختلف متفاوت است، دلیل این امر این است که هنگام عبور سیال از میکرومیکر سیال وارد شده و موجب تغییر در لرجه اخلاق سیال می‌شود. به این صورت که میکرومیکری که نشیبی مناسب به سیال وارد می‌کند، لزیج ظاهری می‌کند که وارده در جریان بیشتری خاصی می‌شود.

در اعداد ریتوپ زبالا، حرکت برنگ در جریان سیال سازورگال اخلاق است. به همین دلیل نیز به یاد شده میکرومیکرها و میزان اجراهای پیونمی در جریان، نتایج مفاهیمی در مزایای مختلف در یک شاخه نوای معین (حتی برای سیال نیوتنی) در میکرومیکرهای مختلف مشاهده می‌شود.

4-6 معرفی میکرومیکر مناسب
برای پیان مصرف بهبود عملکرد میکرومیکرهای اختلاف نسبت به میکرومیکر مستقیم علاوبدی درجه اخلاقی افت شماره هم باید در نظر گرفته شد.

Fig. 15 Variation of mixing index along various micromixers, (a) Re=1, n=0.75, (b) Re=1, n=0.93, (c) Re=100, n=0.75, (d) Re=100, n=0.93

Fig. 16 Variation of mixing index versus power-law indices, (a) Re=100, (b) Re=1

شکل 15 تغییرات درجه اخلاق در طول میکرومیکر، (a) عدد ریتوپ زبالا 1 و شاخه نوای 0.75 (b) عدد ریتوپ زبالا 1 و شاخه نوای 0.93 (c) عدد ریتوپ زبالا 100 و شاخه نوای 0.75 (d) عدد ریتوپ زبالا 100 و شاخه نوای 0.93

در اعداد ریتوپ زبالا، پدیده نفود جرمی، سازورگال اخلاق اختلاف است. جنون در یک عدد ریتوپ زبالا تابی برای یک شاخه نوای معین، سرعت سیال و به


