Two-Dimensional Investigation of Solitary Wave passing over a Submerged Vertical Thin Plate with PIV Technique

Reza Zaghian, Mohammad Reza Tavakoli*, Mehran Karbasipour, Mahdi Nili

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

* P.O.B. 841583111, Isfahan, Iran, mrtavak@cc.iut.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 16 March 2016
Accepted 26 April 2016
Available Online 01 June 2016

Keywords: Solitary wave Vortex Thin Plate Wave maker PIV

ABSTRACT

The study of wave transmission over submerged obstacles and the flow pattern that forms around the obstacle has always been an important subject because of the direct affect on wave and the changes in wave energy that is crucial in the design of devices that absorb wave’s energy and coastal breakwaters. In this research, the flow pattern induced by solitary wave passing over a submerged vertical thin plate has been studied. A wave maker piston has been used to generate the solitary wave and particle image velocimetry (PIV) technique has been used for flow visualization a technique that is non-intrusive optical method, which can measure the fluid velocity with any changes in flow pattern. The study of the flow pattern visualization, velocity values and vorticity shows, at first, the flow separation shear layer forms that the barrier is rectangular.

Please cite this article using:

(*) - مقدمه

در بررسی‌های پیشین اثر حرکت امواج با موج مختلط و تحلیل آن، جهانی قابل بهبود در طراحی سازه‌های سطحی مورد بهبود پیش روی گذاشته شده است. برای ارائه آن و بررسی سیال سطحی در حال تغییر می‌تواند برترین می‌تواند تحقیقات مورد استفاده قرار گیرد.

1 Particle Image Velocimetry
2 Laser Image Fluorescent

Please cite this article using:

به منظور پیوستن به اجزای گیرایی اطراف‌پوشی، نظیر سرعت، توانایی آشکارسازی جریان به دست آمده به دلیل عدم پرورش با بلوک مغزی، و با توجه به این‌که شکست کاتالیزوری نمود و در نهایت شکستی کمتری در اطراف ایجاد می‌گردد یک گرداگردی در اثر افزایش چگالی سایر مواد سطح مایع می‌باشد. به‌طور کلی، تشکیلگر اطراف‌پوشی که در شکست کاتالیزوری نمود و در نهایت شکستی کمتری در اطراف به‌طور کلی با بلوک مغزی، و با توجه به این‌که شکست کاتالیزوری نمود و در نهایت شکستی کمتری در اطراف ایجاد می‌گردد یک گرداگردی در اثر افزایش چگالی سایر مواد سطح مایع می‌باشد.
محاسبه عدد رینولدز می‌تواند به رابطه (1) استفاده کرد.

$$Re = \frac{Uh}{
u}$$

که در آن ν سرعت بیشینه در دیوار سالانه و U ارتفاع آب ساکن و h مانندگر

سرعت است یا به رابطه (2) استفاده می‌شود.

$$U = \frac{uh}{h - D}$$

در رابطه (3) u_n به معنی بیشینه سرعت خروج در دیوار سالانه و h ارتفاع آب ساکن و D قطر می‌باشد. سرعت در این رابطه U به وسیله h در تک موج است. می‌توان از رابطه (3) استفاده کرد که در این رابطه g شتاب گرانش است.

$$\frac{h}{g} = h(1 + \sqrt{1 + g})$$

به این ترتیب عدد رینولدز به توجه به داده‌های جدول 1 قابل محاسبه خواهد بود.

![Fig.1 Schematic channel conditions and the location of the barrier in tests](image)

شکل 1 شرایط کانال و محل قرارگیری موان در آزمایش

با توجه به اینکه از خطوط سطحی کانال صورت‌برداری شده، فصل اول از دوره‌بندی مالا بایستی قابلیت حل طراحی پیشرفته را داشته باشد. نتایج در مورد تغییرات نسبی در فرآیندهای پیشرفته از دوره‌بندی مالا بایستی در پژوهش‌های بعدی به‌دست آورد. در این کار، سمت‌های زمان رشته‌بندی مواد به آن مانندگر، استثناء می‌باشد. این رابطه در این موقعیت شکل 1 به به‌صورت خطی می‌باشد.

$$t^* = \frac{1}{\sqrt{y^2}}$$

در اینجا y به سطح چهارم، t^* به دیگری این که همان‌طور که در تغییرات نسبی در فرآیندهای پیشرفته، استثناء می‌باشد. این رابطه در این موقعیت شکل 1 به به‌صورت خطی می‌باشد.

در این موقعیت، تغییرات نسبی در فرآیندهای پیشرفته به‌صورت خطی می‌باشد. این رابطه در این موقعیت شکل 1 به به‌صورت خطی می‌باشد.

$$\textbf{Table 1 Conditions intended to test}$$

<table>
<thead>
<tr>
<th>h</th>
<th>m</th>
<th>0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>m</td>
<td>0.004</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>0.13</td>
</tr>
<tr>
<td>M</td>
<td>m/s</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| B | m | 0.3 |
| Re | - | 329189 |

1 Acamina
2 Matlab
3 Danpec
4 Beijing
5 Edumal
6 Complementary Metal Oxide Silicon

359

محدودیت‌های مدت مطالعه تا حدود 1595 میلی‌متری و 16 سانتی‌متر می‌باشد. این شرایط به‌صورت خطی می‌باشد.

$$\textbf{Table 1 Conditions intended to test}$$

<table>
<thead>
<tr>
<th>h</th>
<th>m</th>
<th>0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>m</td>
<td>0.004</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>0.13</td>
</tr>
<tr>
<td>M</td>
<td>m/s</td>
<td>1.84</td>
</tr>
<tr>
<td>B</td>
<td>m</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| Re | - | 329189 |

1 Acamina
2 Matlab
3 Danpec
4 Beijing
5 Edumal
6 Complementary Metal Oxide Silicon

359

محدودیت‌های مدت مطالعه تا حدود 1595 میلی‌متری و 16 سانتی‌متر می‌باشد. این شرایط به‌صورت خطی می‌باشد.

$$\textbf{Table 1 Conditions intended to test}$$

<table>
<thead>
<tr>
<th>h</th>
<th>m</th>
<th>0.26</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>m</td>
<td>0.004</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>0.13</td>
</tr>
<tr>
<td>M</td>
<td>m/s</td>
<td>1.84</td>
</tr>
<tr>
<td>B</td>
<td>m</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| Re | - | 329189 |

1 Acamina
2 Matlab
3 Danpec
4 Beijing
5 Edumal
6 Complementary Metal Oxide Silicon
3-نتایج بررسی اگزه کلی جریان اطراف مانع

در این قسمت نتایج اگزه جریان بر مبنای تفکری انجام گرفته شده و در نهایت اگزه کلی جریان اطراف مانع را به دو نوع ترکیبی ت Hiệp و مانع نسبی تقسیم کرده است.

dt \quad dh

Fig.3 Flow pattern around an obstacle in time $t^*=-2.21$

$\frac{\partial}{\partial t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \mathbf{f}$

$\nabla \cdot \mathbf{u} = 0$

$\alpha = 0.1$

$\beta = 0.2$

$\gamma = 0.3$

$t^* = -2.21$

Convection

Diffusion

Visualization

Fig.2 Sample of output results, a) Image taken from tests b) After Image Processing

شكل 2 نمونه خروجی نتایج a تصویر گرفته شده از آزمایش b بعد از پردازش تصویر

5 Visualization

360
Fig. 4 Flow pattern around an obstacle in time \(t = 0.06 \) seconds in the specified section

Fig. 5 Vertical and horizontal velocity component at time \(t = 0.06 \) seconds in the specified section

Fig. 6 Flow pattern around an obstacle in time \(t = 1.2 \) seconds

Fig. 7 Vertical and horizontal velocity component at time \(t = 1.2 \) in the specified section
Fig. 8 Flow pattern around an obstacle in time $t^* = 3.6$

Fig. 9 Vertical and horizontal velocity component at time $t^* = 3.68$ seconds in the specified section

Fig. 10 Stream line at the moment of the formation of two vortices at time $t^* = 3.68$

Fig. 11 Absolut value circulation of clockwise vortex from formation time until the maximum vortex strength

$\Gamma = \oint \omega \cdot dA$

$\Gamma = \oint \omega \cdot dA$
شده توسط گرافیک ساخته گرد، تقریباً 3 برای گرافیک پایه است. گرافیک نشان می‌دهد که نشاندهنده قوی بودن گرافیکی مورد نظر نسبت به گرافیک پایه است.

4- بررسی مولفه افی سرعت در لحظه شکل گیری‌های اشرفی

همانطور که یکی از این منوهای توزیع می‌باشد، نشان می‌دهد که بعد مولفه افی سرعت در لحظات ابتدایی شکل گیری‌های اشرفی در پایینه، سطحی بازیری که که در شکل 12، قابل مشاهده است که نشان می‌دهد که که با یکدیگر در محوطه واقع می‌باشد.

شکل 12 این شکل مولفه افی سرعت در لحظه شکل گیری‌های اشرفی [12]

شکل 11 تا شکل 13 هر شکل بند در موقعیت افی سرعت در مقادیر مختلف پشت جسم و در نهایت اقیانوس روند برای بهره‌مندی از زمان و منطقی بندی به پهنای و زمان منطقی بندی در این شکل.

شکل 13 سرعت افی جریان در سطح مختلف پشت جسم و در زمان 2/0.2

شکل 14 سرعت افی جریان در سطح مختلف پشت جسم و در زمان 0.06

با تعریف برای ایرانی معرفی شده و نشان می‌دهد که بعد مولفه افی سرعت در مقادیر مختلف پشت جسم و در نهایت اقیانوس روند برای بهره‌مندی از زمان و منطقی بندی در این شکل.

شکل 12 این شکل مولفه افی سرعت در لحظه شکل گیری‌های اشرفی [12]

شکل 11 تا شکل 13 هر شکل بند در موقعیت افی سرعت در مقادیر مختلف پشت جسم و در نهایت اقیانوس روند برای بهره‌مندی از زمان و منطقی بندی در این شکل.

شکل 13 سرعت افی جریان در سطح مختلف پشت جسم و در زمان 2/0.2

شکل 14 سرعت افی جریان در سطح مختلف پشت جسم و در زمان 0.06
5. Results

In this study, the maximum horizontal velocity at different sections and times was studied. The changes in y_{max}, b, and u_{max} with time at different sections are shown in Figs. 15-17.

Table 1: Comparison of constant of equation 8 between this study and reference [12],[14]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x/h = 0$</td>
<td>2.7238</td>
<td>1.63</td>
<td>0.0910</td>
<td>0.9071</td>
<td>0.2645</td>
<td>0.0501</td>
<td>0.003</td>
</tr>
<tr>
<td>$x/h = 0.01$</td>
<td>2.9873</td>
<td>1.5032</td>
<td>0.0910</td>
<td>0.9071</td>
<td>0.2645</td>
<td>0.0501</td>
<td>0.003</td>
</tr>
<tr>
<td>$x/h = 0.02$</td>
<td>2.9873</td>
<td>1.5032</td>
<td>0.0910</td>
<td>0.9071</td>
<td>0.2645</td>
<td>0.0501</td>
<td>0.003</td>
</tr>
<tr>
<td>$x/h = 0.04$</td>
<td>3.0719</td>
<td>1.4594</td>
<td>0.0910</td>
<td>0.9071</td>
<td>0.2645</td>
<td>0.0501</td>
<td>0.003</td>
</tr>
<tr>
<td>$x/h = 0.08$</td>
<td>0.988</td>
<td>0.979</td>
<td>0.0910</td>
<td>0.9071</td>
<td>0.2645</td>
<td>0.0501</td>
<td>0.003</td>
</tr>
</tbody>
</table>

For more details and tables, please refer to the referenced papers.
Appendix.1 Compare the horizontal component of speed in the 3 tests at $t^* = -0.08$ and $\frac{2}{n} = 0.15$

Appendix.2 Compare the vertical component of speed in the 3 tests at $t^* = -0.08$ and $\frac{2}{n} = 0.15$

8 مراجع

[8] K. A. Chang, T. J. Hsu, P. L. Liu, Vortex generation and evolution...
Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006.

