1. N. Calisi, P. Salvo, B. Melai, C. Paoletti, A. Pucci, F. Di Francesco, Effects of Thermal Annealing on SEBS/MWCNTs Temperature-Sensitive Nanocomposites for the Measurement of Skin Temperature, Materials Chemistry and Physics, Vol 186, pp. 456-461, 2017. [
DOI:10.1016/j.matchemphys.2016.11.018]
2. M. Sobkowiak, T. Rebis, G. Milczarek, Electrocatalytic Sensing of Polynitroaromatic Compounds on Multiwalled Carbon Nanotubes Modified with Alkoxy-Sulfonated Derivative of PEDOT, Materials Chemistry and Physics, Vol 186, pp. 108-114, 2017. [
DOI:10.1016/j.matchemphys.2016.10.035]
3. J.P.S. da Silva, B.G. Soares, S. Livi, G.M. Barra, Phosphoniume-Based Ionic Liquid as Dispersing Agent for MWCNT in Melt-Mixing Polystyrene Blends: Rheology, Electrical Properties and EMI Shielding Effectiveness, Materials Chemistry and Physics, Vol 189, pp. 162-168, 2017. [
DOI:10.1016/j.matchemphys.2016.12.073]
4. Y. Zare, K.Y. Rhee, Development of an Advanced Takayanagi Equation for the Electrical Conductivity of Carbon Nanotube-Reinforced Polymer Nanocomposites, Journal of Physics and Chemistry of Solids, Vol 157, 2021. [
DOI:10.1016/j.jpcs.2021.110191]
5. Y. Zare, K.Y. Rhee, The Mechanical Behavior of CNT Reinforced Nanocomposites Assuming Imperfect Interfacial Bonding Between Matrix and Nanoparticles and Percolation of Interphase Regions, Composites Science and Technology, Vol 144, pp. 18-25, 2017. [
DOI:10.1016/j.compscitech.2017.03.012]
6. Banks-Sills L, Shiber DG, Fourman V, Eliasi R, Shlayer A., Experimental Determination of Mechanical Properties of PMMA Reinforced with Functionalized CNTs, Composites Part B: Engineering, pp. 335-345, 2016. [
DOI:10.1016/j.compositesb.2016.04.015]
7. Zare Y, Garmabi H, Rhee KY., Prediction of Complex Modulus in Zphase-Separated Poly (lactic acid)/Poly (ethylene oxide)/Carbon Nanotubes Nanocomposites, Polymer Testing, Vol. 66, pp. 189-194, 2018. [
DOI:10.1016/j.polymertesting.2018.01.031]
8. K. Yusupov, A. Zakhidov, S. You, S. Stumpf, P. Martinez, A. Ishteev, A. Vomiero, V. Khovaylo, U. Schubert, Influence of Oriented CNT Forest on Thermoelectric Properties of Polymer-based Materials, Journal of Alloys and Compounds, Vol. 741, pp. 392-397, 2018. [
DOI:10.1016/j.jallcom.2018.01.010]
9. Y. Zare, K.Y. Rhee, Micromechanics Modeling of Electrical Conductivity for Polymer Nanocomposites by Network Portion, Interphase Depth, Tunneling Properties and Wettability of Filler by Polymer Media, Fibers and Polymers, Vol 22, pp. 1343-1351, 2021. [
DOI:10.1007/s12221-021-0674-x]
10. Y. Zare, Electrical Conductivity of Interphase Zone in Polymer Nanocomposites by Carbon Nanotubes Properties and Interphase Depth, Journal of Applied Polymer Science, pp. 1-9, 2020. [
DOI:10.1002/app.50313]
11. Y. Zare, K.Y. Rhee, Advancement of a Model for Electrical Conductivity of Polymer Nanocomposites Reinforced with Carbon Nanotubes by a Known Model for Thermal Conductivity, Engineering with Computers, 2020. [
DOI:10.1007/s00366-020-01220-7]
12. N. Afiqah, M. Radzuan, A. Bakar, J. Sahari, A Review of Electrical Conductivity Models for Conductive Polymer Composite, International Journal of Hydrogen Energy, pp. 1-12, 2016.
13. Vargas-Bernal R, Herrera-Pérez G, Calixto-Olalde ME, Tecpoyotl-Torres M., Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices. Journal of Electrical and Computer Engineering, 2013. [
DOI:10.1155/2013/179538]
14. Neffati R, Brokken-Zijp JMC., Electric Conductivity in Silicone-Carbon Black Nanocomposites: Percolation and Variable Range Hopping on a Fractal, Materials Research Express, Vol 6(12):125058, 2019. [
DOI:10.1088/2053-1591/ab58fd]
15. Kumar V, Alam MN, Manikkavel A, Song M, Lee DJ, Park SS., Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A review. Polymers (Basel), Vol 13(14), 2021. [
DOI:10.3390/polym13142322]
16. F. Deng, Q.-S. Zheng, An Analytical Model of Effective Electrical Conductivity of Carbon Nanotube Composites, Applied Physics Letters, Vol. 92, 2008. [
DOI:10.1063/1.2857468]
17. Takeda T, Shindo Y, Kuronuma Y, Narita F., Modeling and Characterization of the Electrical Conductivity of Carbon Nanotube- based Polymer Composites, Polymer Vol. 52, No. 17, pp. 3852-3856, 2011. [
DOI:10.1016/j.polymer.2011.06.046]
18. Y. Zare, K.Y. Rhee, S.J. Park, A Developed Equation for Electrical Conductivity of Polymer Carbon Nanotubes (CNT) Nanocomposites Based on Halpin-Tsai Model, Results in Physics, Vol. 14, 2019. [
DOI:10.1016/j.rinp.2019.102406]
19. Zelinka SL, Glass SV, Stone DS. A Percolation Model for Electrical Conduction in Wood with Implications for Wood-Water Relations, Wood Fiber Science, Vol 40, pp. 544-552, 2008.
20. Wang SF, Ogale AA. Simulation of Percolation Behavior of Anisotropic Short-Fiber Composites with a Continuum Model and Non-cubic Control Geometry, Composites Science and Technology, Vol 46, pp. 389-398, 1993. [
DOI:10.1016/0266-3538(93)90184-I]
21. Song P, Song J, Zhang Y., Stretchable Conductor Based on Carbon Nanotube/Carbon Black Silicone Rubber Nanocomposites with Highly Mechanical, Electrical Properties and Strain Sensitivity. Composites Part B, Vol 191:107979, 2020. [
DOI:10.1016/j.compositesb.2020.107979]
22. Yang H, Yao X, Yuan L, Gong L, Liu Y., Strain-Sensitive Electrical Conductivity of Carbon Nanotube-Graphene-Filled Rubber Composites Under Cyclic Loading. Nanoscale, Vol 11(2): pp 578-86, 2019. [
DOI:10.1039/C8NR07737A]
23. Lee KS, Phiri I, Kim SH, Oh K, Ko JM., Preparation and Electrical Properties of Silicone Composite Films Based on Silver Nanoparticle Decorated Multi-Walled Carbon Nanotubes. Materials (Basel)., Vol 14(4), pp. 1-8, 2021. [
DOI:10.3390/ma14040948]
24. Li ZW., Thermoelectric Properties of Carbon Nanotube/Silicone Rubber Composites., Journal of Experimental Nanoscience, Vol 12(1), pp. 188-96, 2017. [
DOI:10.1080/17458080.2017.1295475]
25. Nabeel M, Fiser B, Viskolcz B., Preparation of Bamboo-Like Carbon Nanotube Loaded Piezoresistive Polyurethane-Silicone Rubber Composite, Polymers, 2021; [
DOI:10.3390/polym13132144]
26. Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S., Carbon Nanotube Based Elastomer Cmposites-an Approach Towards Multifunctional Materials. Journal of Materials Chemistry C, Vol 2(40), pp. 8446-85, 2014. [
DOI:10.1039/C4TC01037J]
27. بیات، مهناز و صفائی، جواد و ملازاده بیدختی، سحر، طراحی سیستم خبره فازی برای تخمین و بهینه سازی هدایت الکتریکی کامپوزیت سیلیکون/ نانولوله- های کربنی چند دیواره با هدف توسعه و ساخت الکترودهای خشک فعال الکتروانسفالوگرافی، کنگره مشترک سیستمهای فازی و هوشمند ایران (نوزدهمین کنفرانس سیستمهای فازی و هفدهمین کنفرانس سیستمهای هوشمند), مشهد، 1399.
28. طباطبایی، محمد و طاهری بهروز، فتح الله و رضوی، سید مرتضی و لیاقت، غلامحسین، افزایش هدایت الکتریکی کامپوزیتهای کربن/اپوکسی با استفاده از نانو ذرات، فصلنامه علوم و فناوری کامپوزیت، دوره 5، شماره 4، 1397.
29. Y. Zare, K.Y. Rhee, Definition of "b" Exponent and Development of Power-Law Model for Electrical Conductivity of Polymer Carbon Nanotubes Nanocomposites, Results in Physics, Vol 16, 2020. [
DOI:10.1016/j.rinp.2020.102945]
30. Tang ZH, Li YQ, Huang P, Fu YQ, Hu N, Fu SY., A New Analytical Model for Predicting the Electrical Conductivity of Carbon Nanotube Nanocomposites, Composites Communications, 2020. [
DOI:10.1016/j.coco.2020.100577]
31. Kim YJ, Shin TS, Do Choi H, Kwon JH, Chung Y-C, Yoon HG., Electrical Conductivity of Chemically Modified Multiwalled Carbon Nanotube/Epoxy Composites, Carbon, Vol. 43, No. 1, pp. 23-30, 2005. [
DOI:10.1016/j.carbon.2004.08.015]
32. دیتاشیت محصولات شرکت نانوصدرا، آخرین دسترسی 18 آبان 1400، https://nanosadra.com/productsdatasheet.pdf/
33. Wei X, Jia Z, Sun Z, Liao W, Qin Y, Guan Z, et al., Study of Anti-Icing Performance of Insulator Strings Bottom-Coated with Semiconductive Silicone Rubber Coating, IEEE Transaction on Dielectrics and Electrical Insulation, Vol 19(6), pp. 2063-72, 2012. [
DOI:10.1109/TDEI.2012.6396966]
34. Liao W, Jia Z, Guan Z, Wang L, Yang J, Fan J, et al., Reducing Ice Accumulation on Insulators by Applying Semiconducting RTV Silicone Coating, IEEE Transaction on Dielectrics and Electrical Insulation, Vol 14(6), pp. 1446-54, 2007. [
DOI:10.1109/TDEI.2007.4401227]
35. Kapdi AR, Maiti D., Strategies for Palladium-Catalyzed Non-Directed and Directed C Bond H Bond Functionalization, pp. 1-486, 2017. [
DOI:10.1016/j.focat.2017.05.110]
36. https://www.wacker.com/cms/en-us/siliconerubber.pdf, Last access Nov. 5, 2021.
37. Standard Test Method for Dielectric and Resistive Properties of Solid Insulating Materials-Part 3-1: Determination of Resistive Properties (DC methods)-Volume Resistance and Volume Resistivity-General Method, Annual Book of IEC Standard, IEC 62631-4-1, 2016.
38. Ghasemzadeh h. and Akbari Jalalabad E., Computing the Compressive Strength of Cement Composite Reinforced with Carbon Nanotube Assuming Isotropic Behavior for CNT, In Persian, Journal of Modares Civil Engineering, Vol 12, No. 1, 2012.
39. Babazade A., Hadad M., Safarabadi M., Investigation of the Effect of Graphene Nano Plates and Carbon Nanotubes on the Improvement of Mechanical Properties of Aluminum Matrix Nanocomposites, In Persian, Journal of Science and Technology of Composites, Vol. 7, No. 4, pp. 1197-1206, 2021.
40. Rikhtegar F., Shabestari S., Saghafian H., Investigation of Microstructure and Mechanical Properties of Al2024-CNT Nanocomposite Produced by Flake Powder Metallurgy Process, In Persian, Journal of Science and Technology of Composites, Vol. 2, No. 1, pp. 91-100, 2017.
41. Chen L, Ozisik R, Schadler LS., The Influence of Carbon Nanotube Aspect Ratio on the Foam Morphology of MWNT/PMMA Nanocomposite Foams, Polymer, Vol. 51, No. 11, pp. 2368-2375, 2010. [
DOI:10.1016/j.polymer.2010.03.042]