Volume 22, Issue 5 (May 2022)                   Modares Mechanical Engineering 2022, 22(5): 356-355 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei H, Shahnazar P, Meskini M, Sarkhosh R. Ballistic Performance Analysis of Ultra High Molecular Weight Polyethylene (UHMWPE) Composite. Modares Mechanical Engineering 2022; 22 (5) :356-355
URL: http://mme.modares.ac.ir/article-15-55144-en.html
1- Associate Professor, Graduate Center, Aeronautical University of Science and Technology, Tehran, Iran
2- MSc of Aerospace-Structure, Aeronautical University of Science and Technology, Tehran, Iran
3- Phd Student of Mechanics, Graduate Center, Aeronautical University of Science and Technology, Tehran
4- Instructor, Faculty of Aerospace Engineering, Aeronautical University of Science and Technology, Tehran, Iran , R.sarkhosh@ssau.ac.ir
Abstract:   (1622 Views)
Ultra-High molecular weight polyethylene (UHMWPE) fibers are among the strongest and lightest fibers available and are widely used in high-performance ballistic applications. Despite the great advancement of computational analysis in recent years, precise calculations have not been performed to identify the failure of these fibers due to the complexity of the material behavior to impact. In this research, using the most advanced finite element modeling method of composites (Abaqus-Explicit) has been used to study the composite behavior of these fibers subjected to high-velocity projectile impact. Fiber and matrix are designed using solid elements and 3D Hashin failure criterion was used to determine the behavior of the material. Since this criterion is not available in Abaqus, the VUMAT subroutine has been used to implement this criterion. Velocity diagrams and damage evaluation have been reported. To evaluate and validate this method, six samples of Ultra High Molecular Weight Polyethylene (UHMWPE) Composite panels, consisting of 20 and 45 layers, respectively, were experimentally studied by high-velocity projectiles at different velocities. The simulation results are in good agreement with the experimental results.
Full-Text [PDF 963 kb]   (1134 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2021/08/26 | Accepted: 2021/12/11 | Published: 2022/04/30

References
1. S. Samanta, D. Datta, Experimental and numerical simulation-based assessment of Kevlar composite specimens under ballistic impact, NDT & E Int. (2009).
2. A. Esnaola, I. Tena, J. Aurrekoetxea, I. Gallego, I. Ulacia, Effect of fibre volume fraction on energy absorption capabilities of E-glass/polyester automotive crash structures, Compos. Part B: Eng. 85 (2016) 1-7. [DOI:10.1016/j.compositesb.2015.09.007]
3. C. Lopez, Z. Gurdal, P.P. Camanho, E.E. Gonzalez, Simulation of Low-velocity impact damage on composite laminates, in: AIAA SDM Conference, vol. 2245, 2009. [DOI:10.2514/6.2009-2445]
4. ] G. Ben-Dor, A. Dubinsky, T. Elperin, Investigation and optimization of protective properties of metal multi-layered shields: a review, Int. J. Prot. Struct. 3 (2012) 275-291. [DOI:10.1260/2041-4196.3.3.275]
5. G. Ben-Dor, A. Dubinsky, T. Elperin, New results on ballistic performance of multilayered metal shields: review, Theor. Appl. Fract. Mech. 88 (2017) 1-8. [DOI:10.1016/j.tafmec.2016.11.002]
6. W.J. Cantwell, J. Morton, The impact resistance of composite materials - a review, Composites 22 (5) (1991) 347-362. [DOI:10.1016/0010-4361(91)90549-V]
7. D. Fernández-Fdz, R. Zaera, J. Fernández-Sáez, A constitutive equation for ceramic materials used in lightweight armours, Comput. Struct. 89 (23-24) (2011) 2316-2324. [DOI:10.1016/j.compstruc.2011.08.003]
8. M.J. Hinton, A.S. Kaddour, P.D. Soden, "A further assessment of the predictive capabilities of current failure theories for composite laminates, comparison with experimental evidence", Compos. Sci. Technol. 64 (3-4) (2004) 549-588. [DOI:10.1016/S0266-3538(03)00227-6]
9. Serjouei A, Gour G, Zhang X, et al. On improving ballistic limit of Bi-layer ceramicmetal armor. Int J Impact Eng 2017;105:54-67. [DOI:10.1016/j.ijimpeng.2016.09.015]
10. Krishnan K, Sockalingam S, Bansal S, et al. Numerical simulation of ceramic composite armor subjected to ballistic impact. Compos B Eng 2010;41(8):583-93. [DOI:10.1016/j.compositesb.2010.10.001]
11. Hu D, Zhang Y, Shen Z, et al. Investigation on the ballistic behavior of mosaic SiC/ UHMWPE composite armor systems. Ceram Int 2017;43(13):10368-76. [DOI:10.1016/j.ceramint.2017.05.071]
12. Liu W, Chen Z, Cheng X, et al. Design and ballistic penetration of the ceramic composite armor. Compos B Eng 2016;84(2):33-40. [DOI:10.1016/j.compositesb.2015.08.071]
13. Attwood J.P., Khaderi S.N., Karthikeyan K., Fleck N.A., O'Masta M.R., Wadley H.N.G., Deshpande V.S.(2014) "The out-of-plane compressive response of Dyneema® composites", Journal of the Mechanics and Physics of Solids, 70, 200-226. doi: 10.1016/j.jmps.2014.05.017 [DOI:10.1016/j.jmps.2014.05.017]
14. Nguyen L.H., Ryan S., Cimpoeru S.J., Mouritz A.P., Orifici A.C., 2015. The effect of target thickness on the ballistic performance of ultra high molecular weight polyethylene composite, International Journal of Impact Engineering 75, p. 174-83. [DOI:10.1016/j.ijimpeng.2014.07.008]
15. Long Hoang Nguyen, The Ballistic Performance of Thick Ultra High Molecular Weight, School of Engineering, College of Science Engineering and Health, RMIT University.
16. Gürgen S, Kuşhan MC. High performance fabrics in body protective systems. Mater Sci Forum. 2016;880:132-5. https ://doi. org/10.4028/www.scien tific .net/MSF.880.132. [DOI:10.4028/www.scientific.net/MSF.880.132]
17. Zhang D, Sun Y, Chen L, Pan N. A comparative study on low-velocity impact response of fabric composite laminates. Mater Des. 2013;50:750-6. https ://doi.org/10.1016/j.matde s.2013.03.044. [DOI:10.1016/j.matdes.2013.03.044]
18. Lässig T, et al. Investigations on the spall and delamination behavior of UHMWPE composites. Compos Struct. 2017;182:590-7. https ://doi.org/10.1016/j.comps truct .2017.09.031. [DOI:10.1016/j.compstruct.2017.09.031]
19. Arora S, Majumdar A, Butola BS. Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Compos Struct. 2019;210:41-8. https ://doi. org/10.1016/j.comps truct .2018.11.028. [DOI:10.1016/j.compstruct.2018.11.028]
20. Zulkifli F, Stolk J, Heisserer U, Yong AT-M, Li Z, Hu XM. Strategic positioning of carbon fiber layers in an UHMwPE ballistic hybrid composite panel. Int J Impact Eng. 2019;129:119-27. https ://doi.org/10.1016/j.ijimp eng.2019.02.005. [DOI:10.1016/j.ijimpeng.2019.02.005]
21. Chouhan H, Asija N, Ahmed A, Kartikeya C, Bhatnagar N. Effect of moisture on high strain rate performance of UHMWPE fiber based composite. Procedia Struct Integr. 2019;14:830-8. https :// doi.org/10.1016/j.prost r.2019.07.061. [DOI:10.1016/j.prostr.2019.07.061]
22. Yang Y, Chen X. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design. Compos Struct. 2017;174:233-43. https ://doi.org/10.1016/j.comps truct .2017.04.033. [DOI:10.1016/j.compstruct.2017.04.033]
23. Li Liu, Dean Hu, Low velocity impact behavior and simulation of parametric effect analysis for UHMWPE/LLDPE thermoplastic composite laminates. 2020:17 [DOI:10.1016/j.compstruct.2020.113180]
24. Segala D.B., Cavallaro P.V., 2014. Numerical investigation of energy absorption mechanisms in unidirectional composites subjected to dynamic loading events, Computational Materials Science 81, p.303-12. [DOI:10.1016/j.commatsci.2013.08.039]
25. S. W. Tsai and E. M. Wu, "A general theory of strength for anisotropic materials," Journal of Composite Materials, vol. 5, no. 1, pp. 58-80, jan 1971. [DOI:10.1177/002199837100500106]
26. G. Kress, "Examination of hashin's failure criteria for part b of the second world-wide failure exercise: Comparison with test data," Journal of Composite Materials, vol. 47, no. 6-7, pp. 867-891, sep 2012. [DOI:10.1177/0021998312460260]
27. Clegg R.A., White D.M., Riedel W., Harwick W., 2006. Hypervelocity impact damage prediction in composites: Part I-material model and characterisation, International Journal of Impact Engineering 33, p. 190-200. [DOI:10.1016/j.ijimpeng.2006.09.055]
28. Riedel W., Nahme H., White D.M., Clegg R.A., 2006. Hypervelocity impact damage prediction in composites: Part II-experimental investigations and simulations, International Journal of Impact Engineering 33, p. 670 80. [DOI:10.1016/j.ijimpeng.2006.09.052]
29. Wicklein M., Ryan S., White D.M., Clegg R.A., 2008. Hypervelocity impact on CFRP: Testing, material modelling, and numerical simulation, International Journal of Impact Engineering 35, p.1861-1869. [DOI:10.1016/j.ijimpeng.2008.07.015]
30. ANSYS., 2013. AUTODYN Composite Modelling Release 15.0, Canonsburg.
31. Lässig T., Nguyen L., May M., Riedel W., Heisserer U., Van der Werff H., Hiermaier S., 2015. A non-linear orthotropic hydrocode model for ultra-high molecular weight polyethylene in impact simulations, International Journal of Impact Engineering 75, p. 110-122. [DOI:10.1016/j.ijimpeng.2014.07.004]
32. M.A. Iqbal, G. Tiwari, P.K. Gupta, P. Bhargava, Ballistic performance and energy absorption characteristics of thin aluminium plates, Int. J. Impact Eng. 77(2015) 1-15. [DOI:10.1016/j.ijimpeng.2014.10.011]
33. M.J. Hinton, A.S. Kaddour, P.D. Soden, A further assessment of the predictive capabilities of current failure theories for composite laminates, comparison with experimental evidence, Compos. Sci. Technol. 64 (3-4) (2004) 549-588. [DOI:10.1016/S0266-3538(03)00227-6]
34. A.S. Kaddour, M.J. Hinton, Maturity of 3D failure criteria for fibre-reinforced composites, comparison between theories and experiments, Part B of WWFE-II, J. Compos. Mater. 47 (2013) 925-966. [DOI:10.1177/0021998313478710]
35. Hayhurst C.J., Hiermaier S.J., Clegg R.A., Riedel W., Lambert M., 1999. Development of material models for nextel and kevlar-expoxy for high pressures and strain rates, International Journal of Impact Engineering 23, p.365-376. [DOI:10.1016/S0734-743X(99)00087-1]
36. Chocron S., Nicholls A.E., Brill A., Malka A., Namir T., Havazelet D., Van Der Werf H., Heisserer U.,Walker J.D., 2014. Modeling unidirectional composites by bundling fibers into strips with experimental determination of shear and compression properties at high pressures, Composites Science and Technology 101, p. 340. [DOI:10.1016/j.compscitech.2014.06.016]
37. G. Kress, "Examination of hashin's failure criteria for part b of the second world-wide failure exercise: Comparison with test data," Journal of Composite Materials, vol. 47, no. 6-7, pp. 867-891, sep 2012. [DOI:10.1177/0021998312460260]
38. R. G. Cuntze, "The predictive capability of failure mode concept-based strength criteria for multi-directional laminates-part b," Composites Science and Technology, vol. 64, no. 3-4, pp. 487-516, mar 2004. [DOI:10.1016/S0266-3538(03)00225-2]
39. M. Hinton, P. D. Soden, and A.-S. Kaddour, "Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise." Elsevier Science and Technology Ltd., 2004. [DOI:10.1016/B978-008044475-8/50002-0]
40. A. Kaddour and M. Hinton, "Maturity of 3d failure criteria for fibre reinforced composites: Comparison between theories and experiments: Part b of WWFEII," Journal of Composite Materials, vol. 47, no. 6-7, pp. 925-966, mar 2013. [DOI:10.1177/0021998313478710]
41. A. Tasdemirci, G. Tunusoglu, M. Güden, "The effect of the interlayer on the ballistic performance of ceramic/composite armours, experimental and numerical study", Int. J. Impact Eng. 44 (2012) 1-9. [DOI:10.1016/j.ijimpeng.2011.12.005]
42. K.C. Warren, R.A. Lopez-Anido, S.S. Vel, H.H. Bayraktar, "Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing", Compos. Part B: Eng. 84 (2016) 266-276. [DOI:10.1016/j.compositesb.2015.08.082]
43. K. Rassiah, M. Ahmad, A. Ali, "Ballistic impact performance of the layered and laminated composites: a review", Pertanika J. Sci. Technol. 23 (2) (2015) 177-185.
44. S.M. Marur, "Plastics Application Technology for Safe and Lightweight Automobiles", SAE International, 2013 (ISBN of book: 978-0-7680-7640-0). [DOI:10.4271/R-415]
45. Z. Hashin, "Failure criteria for unidirectional fiber composites," Journal of Applied Mechanics, vol. 47, no. 2, p. 329, 1980. [DOI:10.1115/1.3153664]
46. T. A. Bogetti, J. Staniszewski, B. P. Burns, C. P. Hoppel, J. W. Gillespie, and J. Tierney, "Predicting the nonlinear response and progressive failure of composite laminates under triaxial loading: Correlation with experimental results," Journal of Composite Materials, vol. 47, no. 6-7, pp. 793-804, oct 2012. [DOI:10.1177/0021998312462616]
47. L. K. F. H. F.J. Schirmaier, J. Weiland, "A new efficient and reliable algorithm to determine the fracture angle for puck's 3d matrix failure criterion for ud composites," Elsevier Ltd., 2014. [DOI:10.1016/j.compscitech.2014.05.033]
48. Asheesh Sharma, Rohan Mishra, Sanyam Jain, Srikant S. Padhee, Prabhat K. Agnihotri, " Deformation behavior of single and multi-layered materials under impact loading", Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001 Punjab, India.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.