1. Shokrieh, M.M., Residual stresses in composite materials. 2014: Woodhead publishing. [
DOI:10.1533/9780857098597.1.173]
2. Schajer, G.S., Practical residual stress measurement methods. 2013: John Wiley & Sons. [
DOI:10.1002/9781118402832]
3. Schajer, G.S., Advances in hole-drilling residual stress measurements. Experimental mechanics, 2010. 50(2): p. 159-168. [
DOI:10.1007/s11340-009-9228-7]
4. Ahn, S.H., et al., Anisotropic material properties of fused deposition modeling ABS. Rapid prototyping journal, 2002. [
DOI:10.1108/13552540210441166]
5. Sood, A.K., R. Ohdar, and S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & Design, 2009. 30(10): p. 4243-4252. [
DOI:10.1016/j.matdes.2009.04.030]
6. Akhoundi, B., A.H. Behravesh, and A. Bagheri Saed, Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. Journal of Reinforced Plastics and Composites, 2019. 38(3): p. 99-116. [
DOI:10.1177/0731684418807300]
7. Schajer, G.S., B. Winiarski, and P. Withers, Hole-drilling residual stress measurement with artifact correction using full-field DIC. Experimental Mechanics, 2013. 53(2): p. 255-265. [
DOI:10.1007/s11340-012-9626-0]
8. Huang, X., Z. Liu, and H. Xie, Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 2013. 26(6): p. 570-583. [
DOI:10.1016/S0894-9166(14)60002-1]
9. Sutton, M.A., et al., Determination of displacements using an improved digital correlation method. Image and vision computing, 1983. 1(3): p. 133-139. [
DOI:10.1016/0262-8856(83)90064-1]
10. Gebhardt, A., Rapid prototyping. 2003. [
DOI:10.3139/9783446402690.fm]
11. Prevey, P.S., X-ray diffraction residual stress techniques. ASM International, ASM Handbook., 1986. 10: p. 380-392. [
DOI:10.31399/asm.hb.v10.a0001761]
12. Adachi, T., et al., Measurement of microscopic stress distribution of multilayered composite by X-ray stress analysis. Materials Letters, 2003. 57(20): p. 3057-3062. [
DOI:10.1016/S0167-577X(02)01436-2]
13. ASTME83713-a, Standard Test Method for Determining Residual Stresses by the Hole‐Drilling Strain Gauge Method. 2013, American Society for Testing and Materials: West Conshohocken.
14. Haddadi, H. and S. Belhabib, Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique. Optics and Lasers in Engineering, 2008. 46(2): p. 185-196. [
DOI:10.1016/j.optlaseng.2007.05.008]
15. Zhang, D.S. and D.D. Arola, Applications of digital image correlation to biological tissues. Journal of Biomedical Optics, 2004. 9(4): p. 691-700. [
DOI:10.1117/1.1753270]
16. Yoneyama, S., et al., Lens distortion correction for digital image correlation by measuring rigid body displacement. Optical engineering, 2006. 45(2): p. 023602. [
DOI:10.1117/1.2168411]
17. Patterson, E.A., et al., Calibration and evaluation of optical systems for full-field strain measurement. Optics and Lasers in Engineering, 2007. 45(5): p. 550-564. [
DOI:10.1016/j.optlaseng.2006.08.012]
18. Azadi, F., et al., Development of digital image correlation method for non-destructive measurement of residual stress. Fifteenth National Conference and Fourth International Conference on Manufacturing Engineering, Tehran, 2018, https://civilica.com/doc/837888.
19. Kaw, A.K. Mechanics of composite materials. CRC press; 2005 Nov 2,
https://doi.org/10.1201/9781420058291 [
DOI:10.1201/9781420058291.]
20. Hedayati, S.K, et al., 3D Printed PCL Scaffold Reinforced with Continuous Biodegradable Fiber
21. Yarn: A Study on Mechanical and Cell Viability Properties Mechanics of composite materials. Polymer Testing, 2020. 83: P. 106347. [
DOI:10.1016/j.polymertesting.2020.106347]