Volume 22, Issue 8 (August 2022)                   Modares Mechanical Engineering 2022, 22(8): 555-565 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

nikravan A R, kolahan F, Shariati M. Investigation of the effect of ND:YAG laser pulse parameters and compressive force applied to the seam on geometry and strength of the weld joint in 316L stainless steel thin-walled tube. Modares Mechanical Engineering 2022; 22 (8) :555-565
URL: http://mme.modares.ac.ir/article-15-56542-en.html
1- ferdowsi university of mashhad
2- ferdowsi university of mashhad , kolahan@um.ac.ir
Abstract:   (1543 Views)
Due to the importance of the joints in the pressurized instruments and the abilities of the laser welding in this study, the welding of AISI316L tubes have been studied and analyzed. In this regard a fixture has been drawn in order to positioning of the tubes and fixed on the welding desk. The welding input parameters includes the laser welding adjusting variables, includes (welding current, welding pulse width, and welding frequency). Moreover, the effect of the two other variables (rotating speed and the force applied to the welding seam) has also been studied. The welding output characteristics comprises the welding width, depth of penetration and welding strength. The experimental data has been collected using L27 Taguchi design. The relation between the process input variables and output characteristics has been established using different regression models. Based on the analysis of variance (ANOVA) results, pulse width and welding current with 70% contribution have an influential effect on all the three response characteristics. Moreover, the seam force has only the influential effect on the depth of penetration and strength. Next, in optimization step based on the importance of the process characteristics (strength, depth of penetration, welding width), the optimized levels have been determined. At the end, the optimized condition has been conducted using laser welding, in comparison of which the samples in the design matrix, the welding depth has a close relation with the thickness of the wall, the welding boundaries smother and the strength has a close value to the base metal. 
Full-Text [PDF 1256 kb]   (654 Downloads)    
Article Type: Original Research | Subject: Welding
Received: 2021/10/20 | Accepted: 2022/05/5 | Published: 2022/08/1

References
1. Unigovski Ya.B, Lothongkum G, Gutman E.M, Alush D , Cohen R. Low-cycle fatigue behavior of 316L-type stainless steel in chloride solutions, Corrosion Science. 2009;51:3014-3020. [DOI:10.1016/j.corsci.2009.08.035]
2. Lee J. H, Park S.H, Kwon H. S, Kim G.S, Lee C.S. Laser tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance. Materials and Design. 2014;64:559-565. [DOI:10.1016/j.matdes.2014.07.065]
3. Carvalho S.M, Baptista C.A.R.P, Lima M.S.F. Fatigue in laser welded titanium tubes intended for use in aircraft pneumatic systems, International Journal of Fatigue. 2016;90:47-56. [DOI:10.1016/j.ijfatigue.2016.04.018]
4. Soltani H. M, Tayebi M. Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding, Journal of Alloys and Compounds. 2018;767:112-121. [DOI:10.1016/j.jallcom.2018.06.302]
5. Lee H. K, Han H. S, Son K. J, Hong S.B. Optimization of Nd:YAG laser welding parameters for sealing small titanium tube ends, Materials Science and Engineering. 2006;A 415:149-155. [DOI:10.1016/j.msea.2005.09.059]
6. Harinath Y.V, Gopal K.A, Murugan S, Albert S.K. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors small titanium tube ends, Journal of Nuclear Materials. 2013;435:32-40. [DOI:10.1016/j.jnucmat.2012.12.023]
7. Hong J. Joung C. Y, Kim K. H, Heo S.H. Study on Fiber Laser Welding Conditions for the Fabrication of a Nuclear Fuel Rod, International Journal Of Precision Engineering And Manufacturing. 2014;15:777-781. [DOI:10.1007/s12541-014-0399-5]
8. Kumar N, Mukherjee M, Bandyopadhyay A. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels, Optics & Laser Technology. 2017;88:24-39. [DOI:10.1016/j.optlastec.2016.08.018]
9. Prabakaran M.P, Kannan G.R. Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT, Optics and Laser Technology. 2019;112:314-322. [DOI:10.1016/j.optlastec.2018.11.035]
10. Sathiya P, Abdul Jaleel M.Y, Katherasan D. Shanmugarajan B. Optimization of laser butt welding parameters with multiple performance characteristics, Optics & Laser Technology. 2011;43:660-673. [DOI:10.1016/j.optlastec.2010.09.007]
11. Chen H.c, Bi G, Lee B. Y, Cheng C. K. Laser welding of CP Ti to stainless steel with different temporal pulseshapes, Journal of Materials Processing Technology. 2016;231:58-65. [DOI:10.1016/j.jmatprotec.2015.12.016]
12. Wang X, Lu F, Wang H. P, Cui H, Tang X, Wu Y. Mechanical constraint intensity effects on solidification cracking during laser welding of aluminum alloys, Journal of Materials Processing Technology. 2015;218:62-70. [DOI:10.1016/j.jmatprotec.2014.11.037]
13. Torabi A, Kolahan F. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm, Optics and Laser Technology. 2018;103:300-310. [DOI:10.1016/j.optlastec.2017.12.042]
14. Javid Y, Ghoreishi M, Torkamany M. J. Preplaced laser cladding of WC powder on Inconel 718 by Nd:YAG laser, Modares Mechanical Engineering, 2015;15(7):98-106, (In Persian).
15. Han W, Byeon J, Park K. Welding characteristics of the Inconel plate using a pulsed Nd: YAG laser beam, J. Mater. Process Technol. 2001;113 (1):234-237. [DOI:10.1016/S0924-0136(01)00718-X]
16. Sathiya P, Panneerselvam K, Jaleel M.A. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm, Mater. Des. 2012;36:490-498. [DOI:10.1016/j.matdes.2011.11.028]
17. Han Q, Kim D, Kim D, Lee H, Kim N. Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process Technol. 2012;212 (5):1116-1122. [DOI:10.1016/j.jmatprotec.2011.12.022]
18. Sivagurumanikandan N, Saravanan S, Kumar G.S, Raju S, Raghukandan K. Prediction and optimization of process parameters to enhance the tensile strength of Nd:YAG laser welded super duplex stainless steel, Optik . 2018;157:833-840. [DOI:10.1016/j.ijleo.2017.11.146]
19. Kumar S, Batish A, Singh R, Singh T. P. A hybrid Taguchi artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys, Journal of Mechanical Science and Technology. 2014;28(7):2831-2844. [DOI:10.1007/s12206-014-0637-x]
20. Nikravan A.R, Kolahan F. Statistical analysis and optimization of process parameters for cutting rate and surface roughness in wire cut machining of Ti-6Al-4V alloy Modares Mechanical Engineering, 1394;15(9):141-152. (in persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.