1. Unigovski Ya.B, Lothongkum G, Gutman E.M, Alush D , Cohen R. Low-cycle fatigue behavior of 316L-type stainless steel in chloride solutions, Corrosion Science. 2009;51:3014-3020. [
DOI:10.1016/j.corsci.2009.08.035]
2. Lee J. H, Park S.H, Kwon H. S, Kim G.S, Lee C.S. Laser tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance. Materials and Design. 2014;64:559-565. [
DOI:10.1016/j.matdes.2014.07.065]
3. Carvalho S.M, Baptista C.A.R.P, Lima M.S.F. Fatigue in laser welded titanium tubes intended for use in aircraft pneumatic systems, International Journal of Fatigue. 2016;90:47-56. [
DOI:10.1016/j.ijfatigue.2016.04.018]
4. Soltani H. M, Tayebi M. Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding, Journal of Alloys and Compounds. 2018;767:112-121. [
DOI:10.1016/j.jallcom.2018.06.302]
5. Lee H. K, Han H. S, Son K. J, Hong S.B. Optimization of Nd:YAG laser welding parameters for sealing small titanium tube ends, Materials Science and Engineering. 2006;A 415:149-155. [
DOI:10.1016/j.msea.2005.09.059]
6. Harinath Y.V, Gopal K.A, Murugan S, Albert S.K. Study on laser welding of fuel clad tubes and end plugs made of modified 9Cr-1Mo steel for metallic fuel of Fast Breeder Reactors small titanium tube ends, Journal of Nuclear Materials. 2013;435:32-40. [
DOI:10.1016/j.jnucmat.2012.12.023]
7. Hong J. Joung C. Y, Kim K. H, Heo S.H. Study on Fiber Laser Welding Conditions for the Fabrication of a Nuclear Fuel Rod, International Journal Of Precision Engineering And Manufacturing. 2014;15:777-781. [
DOI:10.1007/s12541-014-0399-5]
8. Kumar N, Mukherjee M, Bandyopadhyay A. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels, Optics & Laser Technology. 2017;88:24-39. [
DOI:10.1016/j.optlastec.2016.08.018]
9. Prabakaran M.P, Kannan G.R. Optimization of laser welding process parameters in dissimilar joint of stainless steel AISI316/AISI1018 low carbon steel to attain the maximum level of mechanical properties through PWHT, Optics and Laser Technology. 2019;112:314-322. [
DOI:10.1016/j.optlastec.2018.11.035]
10. Sathiya P, Abdul Jaleel M.Y, Katherasan D. Shanmugarajan B. Optimization of laser butt welding parameters with multiple performance characteristics, Optics & Laser Technology. 2011;43:660-673. [
DOI:10.1016/j.optlastec.2010.09.007]
11. Chen H.c, Bi G, Lee B. Y, Cheng C. K. Laser welding of CP Ti to stainless steel with different temporal pulseshapes, Journal of Materials Processing Technology. 2016;231:58-65. [
DOI:10.1016/j.jmatprotec.2015.12.016]
12. Wang X, Lu F, Wang H. P, Cui H, Tang X, Wu Y. Mechanical constraint intensity effects on solidification cracking during laser welding of aluminum alloys, Journal of Materials Processing Technology. 2015;218:62-70. [
DOI:10.1016/j.jmatprotec.2014.11.037]
13. Torabi A, Kolahan F. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm, Optics and Laser Technology. 2018;103:300-310. [
DOI:10.1016/j.optlastec.2017.12.042]
14. Javid Y, Ghoreishi M, Torkamany M. J. Preplaced laser cladding of WC powder on Inconel 718 by Nd:YAG laser, Modares Mechanical Engineering, 2015;15(7):98-106, (In Persian).
15. Han W, Byeon J, Park K. Welding characteristics of the Inconel plate using a pulsed Nd: YAG laser beam, J. Mater. Process Technol. 2001;113 (1):234-237. [
DOI:10.1016/S0924-0136(01)00718-X]
16. Sathiya P, Panneerselvam K, Jaleel M.A. Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm, Mater. Des. 2012;36:490-498. [
DOI:10.1016/j.matdes.2011.11.028]
17. Han Q, Kim D, Kim D, Lee H, Kim N. Laser pulsed welding in thin sheets of Zircaloy-4, J. Mater. Process Technol. 2012;212 (5):1116-1122. [
DOI:10.1016/j.jmatprotec.2011.12.022]
18. Sivagurumanikandan N, Saravanan S, Kumar G.S, Raju S, Raghukandan K. Prediction and optimization of process parameters to enhance the tensile strength of Nd:YAG laser welded super duplex stainless steel, Optik . 2018;157:833-840. [
DOI:10.1016/j.ijleo.2017.11.146]
19. Kumar S, Batish A, Singh R, Singh T. P. A hybrid Taguchi artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys, Journal of Mechanical Science and Technology. 2014;28(7):2831-2844. [
DOI:10.1007/s12206-014-0637-x]
20. Nikravan A.R, Kolahan F. Statistical analysis and optimization of process parameters for cutting rate and surface roughness in wire cut machining of Ti-6Al-4V alloy Modares Mechanical Engineering, 1394;15(9):141-152. (in persian).