Formation control of a differential drive wheeled robot in trajectory tracking

Ali Keymasi Khalaji

Department of Mechanical Engineering, Kharazmi University, Tehran, Iran

*P.O.B. 15719-14911 Tehran, Iran, keymasi@khu.ac.ir

ARTICLE INFORMATION

Original Research Paper
Received 02 August 2016
Accepted 17 September 2016
Available Online 26 October 2016

Keywords:
Wheeled mobile robot
Nonholonomic systems
Trajectory tracking
Formation control

ABSTRACT

One of the main topics in the field of robotics is the formation control of the group of robots in trajectory tracking problem. Using organized robots has many advantages compared to using them individually. Among them the efficiency of using resources, the possibility of robots' cooperation, increasing reliability and resistance to defects can be pointed out. Therefore, formation control of multi-body robotic systems and intelligent vehicles have attracted considerable attention, this is discussed in this paper. First, kinematic and kinetic equations of a differential drive wheeled robot are obtained. Then, reference trajectories for tracking problem of the leader robot are produced. Next, a kinematic control law is designed for trajectory tracking of the leader robot. The proposed controller steers the leader robot asymptotically, following reference trajectories. Subsequently, a dynamic control algorithm for generating system actuator torques is designed based on feedback linearization method. Afterwards, formation control of the robots has been considered and an appropriate algorithm is designed in order to organize the follower robots in the desired configurations, while tracking control of the wheeled robot. Furthermore, the stability of the presented algorithms for kinematic, dynamic and formation control laws is analyzed using Lyapunov method. Finally, obtained results for different reference paths are presented which represent the effectiveness of the proposed controller.

Downloaded from mme.modares.ac.ir at 11:04 IRDT on Wednesday June 30th 2021
اندازه‌بندی سیستم‌های ربات‌های آزین راهنما

روش راهنما پایه‌های اصلی ربات‌های آزین راهنما هستند که گروهی از ربات‌های آزین راهنما در یک سیستم از دست کرده‌اند. ربات‌های آزین راهنما در طراحی سیستم‌های ربات‌های آزین راهنما از جمله سیستم‌های مبتنی بر رتبه‌بندی خود را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنما را به رپرتور محاسباتی می‌پردازند. ربات‌های آزین راهنما به راحتی سیستم‌های پایه‌های اصلی ربات‌های آزین راهنма
تکنیک آرایش ربات چرخ‌دار دیفرانسیل در تعلیم سیستم حرکت زمانی

• تحلیل تبدیل قوی‌تری کنترل‌های ارائه‌شده و ارائه نتایج حاصل از آن

2. توصیف سیستم و بردسایی

سیستم مورد نظر همون‌گونه که در شکل 1 نمایش داده شده به ربات چرخ‌دار دیفرانسیل است. جراحی‌های دیفرانسیل ربات با مکان‌های مجزا و چهار ربات کری در حالتی نزدیک به حالتی که در آن سطح نسبی دو ربات است. این ربات در حالتی مختصات P و P' شناخته می‌شود و نشاندهه C نقطه مکان جرم ربات و P، P' و P نشان دهنده سه نقطه مکان سیستم. حالت C پایه‌های دو ربات را در شکل 1 نمایش داده است. این دو ربات به صورت مستقیم مختصات تعیین‌پذیری شده و مختصات سیستم تعیین‌پذیری می‌باشند.

3. تغییر سیر حرکت زمانی

نقاطه‌ای ربات در حالتی که در جهت‌های مختلف قرار دارد و به‌منظور بهینه‌سازی سیر ربات، نیاز به تغییر این نقاطه‌ها باعث می‌شود که سیستم تعیین‌پذیری بتواند در حالت‌های مختلف به‌نفع سیستم عملیاتی ربات به راحتی انجام شود. این برای ربات ریتان سیستم تعیین‌پذیری به صورت رابطه (1) انجام می‌شود.

\[
\mathbf{r}_t^T(q) = 0 \quad (j = 1, \ldots, m)
\]

4. تنظیم سیر حرکت مرجع

坟州 می‌کنم سیر مرجع در فضای کارتزین که با استفاده از روابط تعیین‌پذیری شونده به صورت رابطه (8) بیان شده.

\[
\begin{align*}
\frac{d}{dt}\left(\begin{array}{c}
x(t) \\
y(t)
\end{array}\right) & = \begin{array}{c}
x'(t) \\
y'(t)
\end{array}, \\
\text{با استفاده از روابط (6) و (7) به صورت رابطه (8) می‌تواند به این شکل بیان شود.}
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dt}\left(\begin{array}{c}
x(t) \\
y(t)
\end{array}\right) & = \begin{array}{c}
x'(t) \\
y'(t)
\end{array}, \\
\text{با استفاده از روابط (6) و (7) به صورت رابطه (8) می‌تواند به این شکل بیان شود.}
\end{align*}
\]

5. انتقال سیر حرکت در دیفرانسیل ماتریس قوی‌تری از رابطه

به‌منظور بهینه‌سازی سیر ربات، نیاز به تغییر این نقاطه‌ها باعث می‌شود که سیستم تعیین‌پذیری بتواند در حالت‌های مختلف به‌نفع سیستم عملیاتی ربات به راحتی انجام شود. این برای ربات ریتان سیستم تعیین‌پذیری به صورت رابطه (1) انجام می‌شود.

\[
\mathbf{r}_t^T(q) = 0 \quad (j = 1, \ldots, m)
\]

6. تغییر سیر حرکت زمانی

نقاطه‌ای ربات در حالتی که در جهت‌های مختلف قرار دارد و به‌منظور بهینه‌سازی سیر ربات، نیاز به تغییر این نقاطه‌ها باعث می‌شود که سیستم تعیین‌پذیری بتواند در حالت‌های مختلف به‌نفع سیستم عملیاتی ربات به راحتی انجام شود. این برای ربات ریتان سیستم تعیین‌پذیری به صورت رابطه (1) انجام می‌شود.

\[
\mathbf{r}_t^T(q) = 0 \quad (j = 1, \ldots, m)
\]

7. تنظیم سیر حرکت مرجع

坟州 می‌کنم سیر مرجع در فضای کارتزین که با استفاده از روابط تعیین‌پذیری شونده به صورت رابطه (8) بیان شده.

\[
\begin{align*}
\frac{d}{dt}\left(\begin{array}{c}
x(t) \\
y(t)
\end{array}\right) & = \begin{array}{c}
x'(t) \\
y'(t)
\end{array}, \\
\text{با استفاده از روابط (6) و (7) به صورت رابطه (8) می‌تواند به این شکل بیان شود.}
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dt}\left(\begin{array}{c}
x(t) \\
y(t)
\end{array}\right) & = \begin{array}{c}
x'(t) \\
y'(t)
\end{array}, \\
\text{با استفاده از روابط (6) و (7) به صورت رابطه (8) می‌تواند به این شکل بیان شود.}
\end{align*}
\]

\[
\begin{align*}
\theta & = \tan^{-1}\left(\frac{y}{x}\right) \\
\gamma & = \tan^{-1}\left(\frac{x}{y}\right)
\end{align*}
\]

\[
\begin{align*}
\phi &= \frac{\theta}{\gamma} \\
\phi &= \frac{\theta}{\gamma}
\end{align*}
\]
قانون کنترل سیستم‌یک

معادلات خصوصی سیستم کنترل تغییر در حالت زمانی بر اساس روندی که داده خواهد را تکنیک مدیریت می‌شود. اگر این معادلات خطای حالت سیستم در مبدا پایدار شوند سیستم حرکت زمانی راوی تغییرات زمانی می‌باشد و تبدیل مستقل تعیین سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)

حال حرف طراحی ورودی‌های کنترلی به سیستم ورودی و رابطه به کنترلی است که دو تغییرات زمانی حالت در مبدا پایدار شوند سیستم حرکت زمانی پایدار و در هنگام باز هم می‌تواند در دسترس باشد.

به طور کلی، در این به عنوان تغییر می‌باشد.

\[
\begin{align*}
\dot{y}_1 &= a_1 y_1 + a_2 y_2 + a_3 \quad \text{محدود} \\
\dot{y}_2 &= a_4 y_1 + a_5 y_2 + a_6
\end{align*}
\]

(17)
6- مدل دیانتیک ریت چرخ‌دار
معادلات دیانتیک ریت چرخ‌دار از طریق روش لاگرانژ به صورت رابطه (23) به شکلی می‌باشد.

\[
\begin{align*}
\mathbf{M}(q) \ddot{q} + \mathbf{C}(q, \dot{q}) \dot{q} + \mathbf{G}(q) &= \mathbf{B}(q) \tau \\
\mathbf{M}(q) &= \begin{bmatrix}
0 & 0 & -a \\
0 & m & 0 \\
-a m \sin \theta & 0 & m \cos \theta
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\mathbf{C}(q, \dot{q}) &= \begin{bmatrix}
-a m \cos \theta \dot{\theta} \\
0 & 0 \\
-b \theta & 0
\end{bmatrix}
\end{align*}
\]

\[
\mathbf{B}(q) = \begin{bmatrix}
\cos \theta & \sin \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\mathbf{M}_1(q) \dot{\mathbf{q}} + \mathbf{M}_2(q) \dot{\mathbf{q}} + \mathbf{C}(q, \dot{q}) = \mathbf{B}(q) \tau
\]

\[
\begin{align*}
\mathbf{M}_1(q) &= \begin{bmatrix}
0 & 0 & -a \\
0 & m & 0 \\
-a m \sin \theta & 0 & m \cos \theta
\end{bmatrix}
\end{align*}
\]

که در آن \(\mathbf{M}_1(q)\) و \(\mathbf{M}_2(q)\) به صورت ذکر شده است. در مورد راه حل‌های زیر رابطه (25) را در حالت‌کپت این سیستم با راه حلی دقیق شده است. با استفاده از رابطه (27) دست خواهیم یافته.

\[
\tau = \begin{bmatrix}
\tau_1 \\
\tau_2
\end{bmatrix}
\]

محلین می‌توان بردار کنترل‌های سیستم را به صورت روابط (28) و (29) کشف کرد.

\[
\begin{align*}
\mathbf{M}_1(q) = \mathbf{M}_2(q) = \mathbf{C}(q, \dot{q}) = \mathbf{B}(q)
\end{align*}
\]

7- قانون کنترل دیانتیک گشتاور محاسبه شده
در این قسمت با فاکتور کنترل دیانتیکی برای منابع خطا و ضایعات در برابر رابطه (35) قابل پیش‌بینی است.
(35) همچنین مختصات تعیین‌فکه مطابق پیروی‌های حركت دوکلر از رابطه (36) قابل بیان است.

(36) فاصله نسبی ربات رهبر و ربات با بررسی مدل‌هایی که می‌تواند به صورت رابطه (37) بیان گردد.

(37) این مدل‌ها برخی مناهی سیستم‌های طبقه طبقه 2 به صورت رابطه (38) قابل بیان است.

(38) برای رابطه نسبی پی، نمای می‌تواند مدل از رابطه (39) را نوشت.

(39) برای بدست آوردن دینامیک آرایش سیستم با مشتق کننده از ϕ و θ با ساده‌سازی رابطه (40) با خواص داشت.

(40) که در آن $\phi_1=\phi_1+\theta-\theta_1\pi$ تعريف می‌شود.

(41) حال بردار خطای کنترل آرایش سیستم به صورت رابطه (42) با استفاده از روابط (38) خطای کنترل آرایش را می‌توان با به صورت رابطه (43) بدست آورد.

(42) دینامیک خطای کنترل آرایش با مشتق‌گیری از رابطه با به صورت رابطه (43) بدست می‌آید.

(43) رابطه مطابق پیروی در تمام فرآیند کنترل به دلیل وجود فید ضرایب موثر بر انتخاب کننده دینامیک بالا را یادداشت می‌آورد. به صورت مشابه براساس روش خطای فیزیکی به حذف برخی از جملات غیرخطی روابط را استفاده کرد و انگل رابطه (47) مناسب به نظر می‌رسد.

(47) خطا سیستم با این انگل دینامیک به صورت رابطه (48) خواهد بود.

(48) اکنون تابع کاندیدای لیاوانف (49) برای تحلیل یادپذیری پیشنهاد می‌شود.

(49) معروف ماتریس ضریب باعث اعمال ضریب معیاری شده است با.

(50) محاسبه مشتق تابع کاندیدای لیاوانف با بهره‌دار دینامیکی

Fig. 2. Formation control of a differential drive wheeled robot
در این فسم نتایج حاصل از اعمال الگوریتم کنترل جهت بررسی کارایی
کنترل لیکوشن در ریزهای روی یک ربات جریان ریز وidueنیا براثر
می‌باشد. سمت‌های مختلف ربات‌های سیستمی در جدول 1 و پارامترهای
کنترلی نیز در جدول 2 آمده است. استیلی سیستم کنترل ریز سیستم
مرجع وجود نظری را دنبال کند و هزینه ریزهای روی در موقعیت
سیستم نسبت به آن را کننده.

پارامترهایی هنگامی ربات استفاده در جدول 1 بر اساس پارامترهای
متداول آزمایشگاهی مورد استفاده در مرجع [10] انتخاب شده است.

در جدول 2 بر اساس پارامترهای کنترلی ارائه شده تا جدول 2 نیز بهترین کنترلی برای
پارامترهای کنترلی ربات گذاری می‌شود.

جدول 1: مقدار پارامترهای سیستم

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>جرم ربات</td>
<td>m</td>
</tr>
<tr>
<td>طول لبه</td>
<td>l</td>
</tr>
<tr>
<td>شعاع ربات</td>
<td>r</td>
</tr>
<tr>
<td>نیروی ربات</td>
<td>2b</td>
</tr>
<tr>
<td>مختصات مطلق</td>
<td>x, y, z</td>
</tr>
<tr>
<td>PC طول</td>
<td>a</td>
</tr>
</tbody>
</table>

جدول 2: مقدار کنترلی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>پارامترهای کنترلی</td>
<td></td>
</tr>
<tr>
<td>k1, k2, k3</td>
<td>20, 60, 10</td>
</tr>
<tr>
<td>β1, β2, β3</td>
<td>2, 50, 1</td>
</tr>
<tr>
<td>φ1, φ2, φ3</td>
<td>0.1, 0.05, 0.2</td>
</tr>
<tr>
<td>θ1, θ2, θ3</td>
<td>0.1, 0.1, 0.1</td>
</tr>
</tbody>
</table>

شکل 3: مسیر حرکت ربات راه راههای تضاد و سیر مرجع 1 در فضای حرکت

شکل 4: نرخ سیستم آموزش حرکت کنترلی برای تعیین سیستم حرکت ربات راه راههای تضاد

\[\psi_3 = -e_3^T \text{diag} \left(\frac{\rho_3 \rho_3}{\beta_3 \beta_3} \right) \psi_1 \]

(50)
Fig. 5 Kinematic control inputs for the leader and follower robots

Fig. 6 Dynamic control inputs for the leader and follower robots

Fig. 7 Motion path for the leader robot, the followers and the reference path 2 in planar motion (formation 1)

Fig. 8 Error signals for the tracking control of the leader and formation control of the followers
11 مراجع

[29] A. Bazoula, H. Maaref, Formation Control of Multi-Robots via Fuzzy Logic