Exact semi-inverse solutions for the elastoplastic deformation of beam with power law material model

Hassan BeikMohammadalou, Hamid EkhteraeiToussi*

Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
* P.O.B. 9177948944, Mashhad, Iran, ekhteraee@um.ac.ir

ARTICLE INFORMATION

Original Research Paper Received 21 February 2016 Accepted 31 May 2016 Available Online 02 July 2016

Abstract

Engineer analyses of beams are based on the proper guesstimate of deformation fields. Up until now, the analyses of beams have been widely proposed and experienced in elastic region of materials behavior. This paper considers the elastoplastic engineering analysis of beams. In this regard, following the definition of a proper deformation pattern known as classical Euler- Bernoulli model and using the variational calculus principals the governing equations are extracted. In this analysis the behavior of materials obeying the Rosberg-Osgood model and yielding is based on the von Mises criterion. Different numerical solutions are suggested for the solution of these complicated equations in the literature. In this paper the exact solution is provided for a thin beam under the action of uniformly distributed load by using the two analytical methods of homotopy and Adomian for the clamped- clamped boundary conditions. In verification phase, the deformation of beam is compared with the results of Abaqus software. Different graphical representations are provided for the results of the analytical solutions and simulations. Using these data, the level of consistency between the simulated solutions on one side and the Adomian and homotopy techniques on the other side, are assessed. At the end, the validity of applying the classical theory of beams in the elastoplastic analyses is discussed.
به‌طور کلی با یک یا دو طرحی تغییر شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود.

به‌طور کلی با یک یا دو طرحی تغییر شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود.

به‌طور کلی با یک یا دو طرحی تغییر شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود. در تحلیل استفاده‌های تغییر‌شکل، نش و گرندش مشخص می‌شود.

c) آنالیز-دیفرانسیلی مقایسه‌ای نشان داده شد.

در مقاله جامعه زبان حقیقی به روی هوموتونیا معادلات حاکم در روی نمود.

د) ابتدا با بررسی معادلات اندازه‌گیری گردیده و با استفاده از روش هوموتونیا برای حل معادلات غیرخطی و ترکیبی، فردقم به شکل انتقال باشد.

- نکته: این مقاله توسط فیلدهمینی و فردقم در سال 1396 برای پایان‌نامه در دانشگاه شیراز ارائه گردید.

توضیحات:

2) مدل‌سازی نمودار

برای حل معادلات استفاده از روش هم‌بینی و روش ترکیبی انجام شد. روش ترکیبی به‌طوری‌که در هم‌بینی محور سایه‌ای و محور غیرخطی گردیده است استفاده گردید.

3) نتایج:

- نتایج بررسی نشان داد که مدل‌های دیفرانسیلی برای حل معادلات یافته‌های بیشتری دارد.

منبع:

1. Voltra
2. Fedir Holm
3. Homotopy Analysis Method (HAM)
4. Adomian Decomposition Method (ADM)
\[F = \frac{G_m G_v}{E (1 + \nu)} \]

\[\sigma_x = \frac{1}{(1 + \nu)} (u' - zw') \]

\[\sigma_y = \frac{1}{(1 + \nu)} (u' - zw') \]

\[\frac{N}{\int \sigma_x dA} = E' \int (u' - zw') dA = E''u' A_0 \]

\[\frac{M}{\int \sigma_x z dA} = E' \int (u' - zw') zdA = -E''w' l \]

\[E = \frac{E (1 - \nu)}{(1 + \nu)(1 - 2\nu)} \]

\[A = E' A_0 \quad I = \frac{bh^3}{12} \]

\[w = \frac{q}{2EI} L^2 (x - L)^2 \]

\[\varepsilon_{xx} = \frac{\partial u}{\partial x} = u'' - zw'' \]

\[\int \sigma_x d(u' - zw') dAdx = -\int q \delta w dx \]

\[N = \int \sigma_x dA \]

\[M = \int \sigma_x z dA \]

\[\int_0^L (N \delta u' - M \delta w') dx = \int_0^L q \delta w dx \]

\[N' = 0, M' = q, \delta u' = \delta w' = 0, M'' = 0, \delta w'' = 0 \]

\[u(0) = 0, u(L) = w(0) = w(L) = w''(L) = 0 \]

\[\sigma = \frac{\sigma}{E} + k \sigma^p \]

\[\sigma = \frac{\sigma}{E} + k \sigma^p \]

\[\varepsilon_{ij}^P = \frac{3}{2} \frac{\sigma^p}{E} S_i j \]

\[\varepsilon_{ij} = \frac{3}{2} \frac{\sigma^p}{E} S_i j \]

\[\varepsilon_{ij} = \frac{3}{2} \frac{\sigma^p}{E} S_i j \]

\[\varepsilon_{ij} = \frac{3}{2} \frac{\sigma^p}{E} S_i j \]

1 deformation theory

2-2.2.1-2 معلومات حاکم بر الستولاسیک

\[g(x) - z \]

\[\frac{d}{dx} \frac{d}{dx} = u'' - zw'' \]

\[\int \sigma_x d(u' - zw') dAdx = -\int q \delta w dx \]

\[N = \int \sigma_x dA \]

\[M = \int \sigma_x z dA \]

\[\int_0^L (N \delta u' - M \delta w') dx = \int_0^L q \delta w dx \]

\[N' = 0, M' = q, \delta u' = \delta w' = 0, M'' = 0, \delta w'' = 0 \]

\[u(0) = 0, u(L) = w(0) = w(L) = w''(L) = 0 \]
در دیپلم نیمه مکروسکوپ برای تغییر شکل انتوستراتیک ثیر برای مدادهای مختلف

1. معرفی و کاربرد روش اصلاح شده ادموندان در تحلیل نیمه انتوستراتیک

مدالهای ادموندان معمولاً با اساس مختلف همکاری می‌شوند با خوشه‌ای می‌باشد.

\[u(x) = f(x) + \frac{1}{K(x,t)} \int_{t_0}^{t} F(u(t)) \, dt \]

در این مدل، ماهیت محیط دو دامنه‌ای تغییر شده است که، تغییر محیط دو دامنه‌ای تغییر

\[A = E \cdot A_0 \]

\[A_0 = F(u_0) \]

\[A_1 = \frac{d}{dt} F(u_0) \]

\[A_2 = \frac{d^2}{dt^2} F(u_0) + \frac{\mu_1^2}{2} \frac{d}{dt} F(u_0) \]

با گزارش معادله‌ها (38) در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

با گزارش معادله‌ها (38) در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

به‌طور کلی، رابطه‌ها در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

به‌طور کلی، رابطه‌ها در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

به‌طور کلی، رابطه‌ها در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

به‌طور کلی، رابطه‌ها در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]

به‌طور کلی، رابطه‌ها در (37) رابطه (34) به‌صورت

\[\boxed{A_0(0)^2 + \frac{1}{3} \frac{d}{dt} F(u_0) + \frac{2}{3} \frac{d^2}{dt^2} F(u_0) = 0} \]
حل دوی نیمه مکروسکوپی برای تغییر شکل الاستونیمانیک تیر با مدل ناپایی

حسین یکش محمدپور و حمید اختاری طوسی

264

\[u_0(x) = f_1(x) \]

\[u_1(x) = f_2(x) + \lambda \int_0^L K(x, t) A_0(t) \, dt \]

\[u_{n+1}(x) = \lambda \int_0^L K(x, t) A_{n+1}(t) \, dt \]

\[g(t) = g_0(t) + 2 \sum_{m=1}^{\infty} g_m(t) P^m \]

\[\phi(t, P) = g_0(t) + \sum_{m=1}^{\infty} g_m(t) P^m \]

\[\beta(x, t) = P(t) \]

\[\phi(t, P) = g_0(t) \]
 bem اصلی تابع قرار گرفته است و مثالی از این مدل‌ها، مثلاً C3D8R، به‌عنوان مدل‌های مناسب برای بافت‌های سخت و چارتی محسوب می‌شوند.

3-5) نتایج تحلیل تیر استاتیک

در بعضی از موارد، با توجه به شرایط موجود، ممکن است لازم باشد تریلیشن باید به صورت تیر استاتیک صورت گیرد. در این صورت، مدل‌های مناسب تریلیشن شامل مدل‌های C3D8R و C3D8R4 است.

5-2) رابطه تابع به‌عنوان مثال: مدل C3D8R

این مدل برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شود.

5-1) ویژه‌سازی بار افزار آبیک

به‌عنوان مثال، مدل C3D8R4 در شبیه‌سازی تریلیشن‌های سخت بکار می‌رود.

5) نتایج تحلیل تیر استاتیک

در بعضی از موارد، مدل‌های C3D8R و C3D8R4 برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شوند.

4) نتایج تحلیل تیر استاتیک

در بعضی از موارد، مدل‌های C3D8R و C3D8R4 برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شوند.

3) نتایج تحلیل تیر استاتیک

در بعضی از موارد، مدل‌های C3D8R و C3D8R4 برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شوند.

2) نتایج تحلیل تیر استاتیک

در بعضی از موارد، مدل‌های C3D8R و C3D8R4 برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شوند.

1) نتایج تحلیل تیر استاتیک

در بعضی از موارد، مدل‌های C3D8R و C3D8R4 برای شبیه‌سازی تریلیشن‌های سخت استفاده می‌شوند.
بیش از شرایط به‌کارگیری آنها، حصول اطمینان از میزان گرانه‌گیری تحلیل‌های حریم دارد. جهت میکروهای فضایی، همان‌طور که در معادله (57) نشان داده شده، باید ضریب β در جمله به‌کارگیری هم‌بنا به برشپوشی ضریب β در خز مارکیژ تمیز، سیال ناپذیر است به‌طوری‌که خطا محل‌سازی‌ها در جمله به‌کارگیری شش، حدود 0.01 درصد است. این بیان معنی‌داری که برای بار لحظه‌ی روشن مارکیژ، در محدوده‌ای 2.5 درصد از جمله به‌کارگیری شد.

(55) اینها استفاده از مجموع شش جمله اول سیر کافی می‌گردد.

نتایج تحلیل نشان می‌دهد در شرایط استاتیلایستیک با استفاده از هر دو روش تحلیلی هموتروپی و ادومانی، برای نادر دس کریزا، خیز افقی در مقیاس‌های عالی فضایی برنز، به‌صرف‌های ت بو (4 $\pi \approx$ 0) می‌یابد، بازی به‌طوری‌که در حالات استاتیلایستیکی که محدوده‌ای 10 در مراحل شدید است. مقدار محاسبه‌شده برای آن مشابه تحلیل‌های (1-5) قابل جاری‌پذیری است.

جدول 1: پارامترهای مدل استاتیلایستیک رومبرگ-وسگورد مدل (AL7075-T6) [9]

<table>
<thead>
<tr>
<th>h (m)</th>
<th>B (m)</th>
<th>L (m)</th>
<th>n</th>
<th>k</th>
<th>v (GPa)</th>
<th>E (GPa)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>1</td>
<td>10.9</td>
<td>3.94×10^11</td>
<td>0.32</td>
<td>72.4</td>
<td>مقدار</td>
</tr>
</tbody>
</table>

شکل 3 حساسیت متغیر به تعداد ال‌ال.

شکل 4 حساسیت بالا به فشار استاتیلایستیک

شکل 5 تاثیر ضریب β در خز بیشتری برای ماتریسی‌های مختلف روشن هموتروپی

شکل 6 تاثیر β در محدود میانی نیروی حریم استاتیلایستیک

شکل 7 تاثیر β بر انتقال انرژی خورشیدی به ابعاد پلاستیکی
Fig. 7 Longitudinal distribution of σ at a distance $h/4$ above the elastoplastic beam centerline.

Fig. 8 A composite analytical-simulation illustration for the contours of vertically deflected points (mm) in elastoplastic beam.

Fig. 9 Analytical and simulation results for the contours of von-Mises stress (Pa) in elastoplastic beam.

Fig. 10 Analytical and simulation results for the contours of plastic strain (m/m) in elastoplastic beam.

Fig. 11 Analytical and simulation results for the von Mises stress (MPa) in elastoplastic beam.

Fig. 12 Analytical and simulation results for the mid-span transversal distribution of σ in the elastoplastic beam.

Fig. 13 Analytical and simulation results for the mid-span transversal distribution of ε in the elastoplastic beam.

Fig. 11 Analytical and simulation results for the contours of plastic strain (m/m) in elastoplastic beam.

Fig. 12 Analytical and simulation results for the mid-span transversal distribution of σ in the elastoplastic beam.

Fig. 13 Analytical and simulation results for the mid-span transversal distribution of ε in the elastoplastic beam.

Fig. 8 A composite analytical-simulation illustration for the contours of vertically deflected points (mm) in elastoplastic beam.

Fig. 9 Analytical and simulation results for the contours of von-Mises stress (Pa) in elastoplastic beam.
اینکه تبدیل سه‌جایی شکل‌اتیک باقی ماندن با آن که بخشی از از لی و حتی همه نیز به ترکیب استیوانیتیک شده و درای گرفته‌پلاستیک باند، نتایج تحلیل پاسخگو و نتایج تحلیل قابل استفاده است.

6- جمع‌بندی و نتیجه‌گیری
در این مقایسه تحلیل استیوانیتیک، نارک به روش تحلیل مورد توجه قرار گرفته است، در مدارسی نیمه مکوس با ماه‌سی تبدیل از عکس

![شکل ۱۶ تحلیل نیروی خصوصیاتی در وسایل استیوانیتیک](image1.png)

![شکل ۱۷ تحلیل نیروی خصوصیاتی در وسایل استیوانیتیک](image2.png)

![شکل ۱۸ تحلیل نیروی خصوصیاتی در وسایل استیوانیتیک](image3.png)
فرمول‌بندی این مقاله منحصر به تیپ در سر گیری و بارگذاری با بر گستردگی است. اما با توجه به اینکه در فرآیند تحلیل، تأثیر شرایط کرانی و نوع بار در انتهای مرحله محاسبات دادهه می‌شود، از آن با اندکی نگرانی، نتایج برای اقسام شرایط نیز که با توجه به قابلیت است و محاسبات به‌صورتی ی جدید در مقایسه با حجم برای خوشه بسیار کوچک خواهد بود.

7- پیوست

به منظور پایان بیابن مدار (44)، در آغاز تحلیل، حجم اول به شکل رابطه

\[a_0 e_0^2 + \frac{3}{2} e_0 = a_0 + \frac{3}{2} \]

در نظر گرفته می‌شود:

\[e_0 = \frac{a_0}{3} \]

در استفاده از سری ادومینی به‌صورت رابطه (60) می‌شود:

\[a_0 = \frac{1}{5} e_0^{-1} - \frac{3}{2} \]

مثال برای 1 و 2 می‌توان رابطه (62,61) را در نظر گرفت:

\[A_1 = e_1 (d_1 e_1^2 + c_1 - \frac{a_0}{3}) \]

\[\frac{B}{A} \int z dz + \frac{C_3}{D} x \]

\[e_1 = 3.5263h + \sqrt{155.53} \times 10^{-3} c_1 - 1.008 \]

برای جملات بعدی نیز با محاسبات رضایی رابطه (63) نتیجه می‌شود:

\[A_2 = e_2 F(x_0) + \frac{e_2}{2} F''(0) \]

\[e_2 = 0.0004 e_1^2 + 0.353 e_1 + 0.66 c_1 \frac{c_3}{D} \]

\[A_3 = e_3 F(x_0) + \frac{e_3}{2} F''(0) + \frac{e_3}{6} F'''(0) \]

\[e_3 = 52.53 c_2 e_1 + 0.66 c_2 \frac{c_3}{D} \]

\[0.5325 \frac{c_3}{D} x_1 + 0.125 e_1 + 235.1 \frac{c_3}{D} x_2 \times 10^{-3} \]

\[0.0528 c_2 e_1 + 0.66 c_2 \frac{c_3}{D} \]

\[A_4 = e_4 F(x_0) + \frac{1}{2} e_4 e_2^2 + e_1 e_3 \]

\[= \frac{B_2}{A} \int z \int z + \frac{C_4}{D} x \]

\[e_4 = 0.5103 e_1 + 3.0 (e_2 e_1) F''(x_0) + \ldots \]

\[A_4 = 1.5013 e_1 - 1.2 (0.5 e_2 + e_1) e_3 + 1.15 e_1^2 e_2 \]

\[- 0.2775 e_2^3 \times 10^{-3} \]

\[1501.3 e_2 - 0.6 e_2^2 - 1.2 e_1 e_3 - 1.15 e_1^2 e_2 + 0.2775 e_2^3 \]

\[= \frac{500}{D} x^2 - 0.13 e_1^2 + 0.19 e_1^2 + 66 e_1 \]

شکل 19 مقایسه کرنش بالاترکنیک مداوم حامل از روش هوموتونی در مقاطع عرضی مختلف بر اساس استاتیک.

شکل 20 مقایسه کرنش بالاترکنیک مداوم حامل از روش هوموتونی در مقاطع عرضی مختلف بر اساس استاتیک.

شکل 21 مقایسه کرنش بالاترکنیک مداوم حامل از روش هوموتونی در مقاطع عرضی مختلف بر اساس استاتیک.

شکل 22 مقایسه کرنش بالاترکنیک مداوم حامل از روش هوموتونی در مقاطع عرضی مختلف بر اساس استاتیک.

شکل 23 مقایسه کرنش بالاترکنیک مداوم حامل از روش هوموتونی در مقاطع عرضی مختلف بر اساس استاتیک.

