Volume 22, Issue 5 (May 2022)                   Modares Mechanical Engineering 2022, 22(5): 291-302 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taheri-Behrooz F, Torabi M. Residual Strength prediction of the Carbon/Epoxy plates under Low-Velocity Impact. Modares Mechanical Engineering 2022; 22 (5) :291-302
URL: http://mme.modares.ac.ir/article-15-57394-en.html
1- Iran university of Science and Technology , taheri@iust.ac.ir
2- Iran University of Science and Technology
Abstract:   (2004 Views)
In this study, the residual strength of the carbon/epoxy composite plates exposed to the thermal cycles and subjected to low-velocity impact was evaluated using an experimental procedure. Composite plates with a layup of [45/02/-45/902]s and thickness of 2.9 mm under three impact energy levels of 10J, 15J, and 20J and exposed to 200 thermal cycles in the range of -30 to 65° C went under low-velocity impact and compression after impact tests. In performing impact tests, a drop weight test device was used to investigate the behavior of damaged composites, force-time, force-displacement, and energy-time curves at all test temperatures were analyzed. Finally, the effect of temperature and associated damages at different levels of impact was evaluated using radiographic analysis and optical microscopy. Applying 200 thermal cycles in the temperature range of -30 to 65 ° C caused small cracks in the matrix and reduced the energy absorption of the samples. The highest drop in compressive strength is related to the highest impact energy, 20 J, which has a 31.12% decrease in strength. The thermal cycle at different impact energy levels of 10J, 15J, and 20J has led to an increase in the stiffness and compressive strength of the composite specimens. Finally, material parameters of the semi-empirical Caprino model to estimate the residual compressive strength of the carbon/epoxy plates under low-velocity impact and thermal cycles are obtained.
Full-Text [PDF 983 kb]   (1112 Downloads)    
Article Type: Original Research | Subject: Aerospace Structures
Received: 2021/11/25 | Accepted: 2021/12/17 | Published: 2022/04/30

References
1. I. Taraghi, A. Fereidoon, F. Taheri-Behrooz. Low-velocity impact response of woven kevlar/epoxy laminated composites reinforced with multi-walled carbon Nanotubes at Ambient and Low Temperature. Materials and Design. 2014; 53: 152-158. [DOI:10.1016/j.matdes.2013.06.051]
2. J. Körbelin, C. Dreiner, B. Fiedler. Impact of temperature on LVI damage and tensile and compressive residual strength of CFRP. Composites Part C. 2020;. 3: 100074. [DOI:10.1016/j.jcomc.2020.100074]
3. L. Papa, A. Langella, V. Lopresto. CFRP laminates under low‐velocity impact conditions: Influence of matrix and temperature. Polymer Engineering & Science. 2019; 52(12): 2429-2437. [DOI:10.1002/pen.25102]
4. R. Ghajar, A. Rassaf. Effect of impactor shape and temperature on the behavior of E-glass/epoxy composite laminates. Modares Mechanical Engineering. 2014; 14(10):1-8. (In Persian)
5. D. Kevin, PW. Cowley, R. Beaumont. The inter laminar fracture toughness of carbon-fiber/polymer composites: The effect of temperature. Composites science and technology. 1997; 57: 1433-1444. [DOI:10.1016/S0266-3538(97)00047-X]
6. HS. Kim, WX. Wang, Y. Takao. Effects of temperature and stacking sequence on the mode I inter laminar fracture behavior of composite laminates. Key Engineering Materials. 2000; 183: 815-820. [DOI:10.4028/www.scientific.net/KEM.183-187.815]
7. D. Wang, X. Zhou, H.Ge, Z. Liu, H. Liu,K. Sun. The influence of thermal fatigue on the properties of glass fiber/epoxy composites. Polymers & Polymer Composites. 2012; 20: 129-132. [DOI:10.1177/0967391112020001-225]
8. S. Abrate. Impact engineering of composite structures. Springer Science & Business Media. 2011; 526. [DOI:10.1007/978-3-7091-0523-8]
9. M. Richardson, MJ. Wisheart. Review of low-velocity impact properties of composite materials. Composites. Part A: Applied Science and Manufacturing. 1996; 27(12): 1123-1131. [DOI:10.1016/1359-835X(96)00074-7]
10. D. Petersen, R. Rolfes, R. Zimmermann. Thermo-mechanical design aspects for primary composite structures of large transport aircraft. Aerospace Science Technology. 2001; 5(2): 135-146. [DOI:10.1016/S1270-9638(00)01089-0]
11. M C. Lafarie-Frenot, S. Rouquie, N Q. Ho, V. Bellenger. Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling. Composites Part A: Applied Science and Manufacturing. 2006; 37(4): 662-671. [DOI:10.1016/j.compositesa.2005.05.002]
12. D. Ghelli, V. Cantarini, E. Troiani. Influence of thermal cycling on the low velocity Impact response of CFRP laminate. 〖16〗^TH European Conference On Composite Materials. 2014; Seville-Spain.
13. H. Ghasemi, R. Baghersad. Analytical and experimental study of nonlinear behavior and failure coefficient of composite multilayers due to cyclic thermal loading, Iranian Journal of Aviation Engineering. 2012; 14(2): 11-16. (In Persian)
14. I. Moreno, M. Caminero, GP. Rodriguez, JJ. Lopez-Cela. Effect of themal ageing on the impact and flexural damage behaviour of carbon fibre-reinforced epoxy laminate. Polymers. 2019; 11(1): 80-91. [DOI:10.3390/polym11010080]
15. J.Weng, W. Wen, H. Zhang. Study on low velocity impact and residual strength at high temperatures of composite laminates. Aerospace Engineering. 2019; 233(3): 1106-1123. [DOI:10.1177/0954410017748184]
16. C. Soutis, D. Turkmen. Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates, Journal of Composite Materials. 1997; 31: 832-849. [DOI:10.1177/002199839703100805]
17. K. Terada, S. Kobayashi, N. Takeda. Experimental characterization of microscopic damage progress in AS4/PEEK cross-ply laminates under thermal cycling. Advanced Composite Materials. 2000; 9(4): 335-348. [DOI:10.1163/15685510052000147]
18. AR. Ghasemi, H. Khabaz Kashani. Analysis of circular hole and thermal cycle effects on the mechanical properties in multi-layer polymer composite reinforced with nanoparticles. Modares Mechanical Engineering. 2019; 19(1): 229-236. (In Persian)
19. Lazar M. Kachanov. Rupture time under creep conditions. Izvestia Akademii Navsk SSSR.Odtelemie Tekhniheskikh Nauk. 1958; l.8:.26-31.
20. Y. Rabotnov. Creep rupture in Proceedings. the12th International Congress of Applied Mechanics. 1968; 1: 342-349. [DOI:10.1007/978-3-642-85640-2_26]
21. Hai-Po. Cui, Wen. Wei-Dong, Cui. Hai-Tao. An integrated method for predicting damage and residual tensile strength of composite laminates under low velocity impact. Computers & structures. 2009; 87(7-8): 456-466. [DOI:10.1016/j.compstruc.2009.01.006]
22. K. Amirashjaee, S. Fakhreddini-Najafabadi, F. Taheri-Behrooz. Numerical and experimental study of carbon/epoxy composite laminate response to low velocity impact. Journal of Science and Technology of Composites. 2021; 8(1): 1461-1472. (In Persian)
23. G. Caprino. On the prediction of residual strength for notched laminates. Journal of materials science. 1983; 18(8): 2269-2273. [DOI:10.1007/BF00541829]
24. Sarma. Avva V, HL. Padmanabha. Compressive Residual Strength Prediction in Fiber-Reinforced Laminated Composites Subjected To Impact Loads. Fracture 84 Pergamon. 1984; 1:2897-2907. [DOI:10.1016/B978-1-4832-8440-8.50307-0]
25. SIKAWRAP. SikaWrap ® -230 C. WOVEN UNIDIRECTIONAL CARBON FIBRE FABRIC. 2017; 1-4.
26. HEXIONTM. EPIKOTE TM. Resin L20 and EPIKURETM Curing Agent 960 data sheet. 2004; pp.1-4.
27. ASTM International. D7136/D7136M - 15. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. Am Stand Test Methods. 2011; 4-6.
28. ASTM International. D7137/D7137M-17. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. Am Stand Test Methods. 2012; 1-17.
29. H. Tuo, Z. Lu, X. Ma, C. Zhang, S. Chen. An experimental and numerical investigation on low-velocity impact damage and compression-after-impact behavior of composite laminates. Compos Part B Eng. 2019; 167: 329-41. [DOI:10.1016/j.compositesb.2018.12.043]
30. D. Wang, X. Zhou, H. Ge,Z. Liu, H. Liu,K. Sun. The influence of thermal fatigue on the properties of glass fiber/epoxy composites, Polymers & Polymer Composites. 2012; 20(1- 2): 129-132. [DOI:10.1177/0967391112020001-225]
31. MA. Caminero, I. García-Moreno,GP. Rodríguez. Experimental study of the influence of thickness and ply-stacking sequence on the compression after impact strength of carbon fiber reinforced epoxy laminates. Polymer Test. 2018; 66: 360-370. [DOI:10.1016/j.polymertesting.2018.02.009]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.