پاسخ آروالاستیک توربین بادی محور افقی در شرایط تغییر ناگهانی اندمازه و جهت باد با روش ناپایای المان پره - مونتون

عباس ابراهیمی۱، محمود سکانداری۲

۱- استادیار، مهندسی هوافضا، دانشگاه صنعتی شریف، تهران
۲- کارشناسی ارشد، مهندسی هوافضا، دانشگاه صنعتی شریف، تهران
ebrahimi_a@sharif.ir

اطلاعات مقاله

مقاله پذیرفته شده تاریخ: ۲۷ آبان ۱۳۹۱
پایان‌نامه: ۲۹ آبان ۱۳۹۵
و از سال ۳۱ راه اندازی ۱۳۹۵

چکیده

در این پژوهش، تغییرات دینامیکی توان خروجی توربین باد محور افقی سیستم‌های گواشین مرحله در شرایط تغییر ناگهانی اندازه و جهت باد با در روزایی بوک نماینده بردی است که با استفاده از سیستم‌های گواشین مرحله در شرایط تغییر ناگهانی اندازه و جهت باد با در روزایی بوک نماینده بردی است که با استفاده از سیستم‌های گواشین مرحله در شرایط تغییر ناگهانی اندازه و جهت باد با

Aeroelastic response of horizontal-axis wind turbine in sudden wind gusts based on Unsteady Blade Element-Momentum method
Abbas Ebrahimi۱*, Mahmood Sekandari

Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran
* P.O.B. 11155-1639, Tehran, Iran, ebrahimi_a@sharif.ir

ARTICLE INFORMATION

Original Research Paper
Received 15 April 2016
Accepted 19 July 2016
Available Online 21 August 2016

Keywords:
Blade element momentum
Unsteady aerodynamics
Stall dynamic
Aeroelasticity
Wind turbine

ABSTRACT

Wind turbines are subject to various unsteady aerodynamic effects. This includes the wind gust and the change of wind direction. In this work, the aeroelastic behavior of a reference horizontal axis wind turbine has been investigated under different wind gusts and yaw conditions. Unsteady blade element momentum (UBEM) theory and Euler-Bernoulli beam assumption were used for rotor power estimations. To take into account the time delay in aerodynamic loads due to a sudden change in inflow conditions, a dynamic wake model was implemented. The ONERA dynamic stall model was coupled into the UBEM theory to improve the aerodynamic loads prediction in the unsteady inflow and yaw conditions. To verify this method, the results in the case of steady-state are compared with the NREL reference wind turbine and in the unsteady case are compared with the Tjæreborg test turbine. The results indicate that sudden change in wind speed causes sharp fluctuations in terms of elastic torsion of the blade and other parameters such as rotor power. Increase in wind gradient can lead to increasing time delay to a new equilibrium. The increase in yaw angle can be contributed to the rotor power and the reduction in periodic loads. The method presented here may facilitate improvements in the controller design for wind turbines.
ows را به یک دارایی خلاصه گردی می‌توانند بر اثر ایجاد فشار و تنش در بخش‌های ذرات و الکترودیک که در فرآیند مولکول‌دهی، عصبکی و تعویق سیالی صورت می‌گیرد.

یکی از راه‌هایی که برای تولید این محصولات کاربردی استفاده می‌شود می‌تواند از روش‌های مختلفی باشد، اما به‌طور کلی، این حالت را می‌توان به‌کارگیری دو روش عمده تحلیل کرد: ۱) تحلیل مولکول‌دهی و ۲) تحلیل عصبکی. در اینجا، تمرکز بر روی روش‌های مختلفی از این روش‌ها می‌شود.

dedded به یک دیگر، بررسی این محصولات با روش‌های مختلفی از این روش‌ها می‌شود.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد. V هو عامل خطا در روش پره‌های مولکول‌دهی است. استفاده از این روش بهترین میزان دیاگرام و سطح مقطع پره‌ها به سطح جاری شده سپهری و V به‌طور مستقیم به‌طور مستقیم با استفاده از دیاگرام مشخص می‌شود.

\[
\alpha = \frac{1}{4 \sin^2 \phi} \left(\phi \cos^2 \phi + \sin^2 \phi \right) + 1
\]

\[
\alpha = \frac{1}{4 \sin^2 \phi} \left(\phi \cos^2 \phi + \sin^2 \phi \right) + 1
\]

\[
F = \frac{2}{\pi} \cos^{-1} \left(\exp \left(\frac{-N R \sigma}{2 \sin \phi} \right) \right)
\]

\[
\sigma = \frac{N C_0}{2 \pi R}
\]

که در این روش، برای روش‌های مختلفی استفاده می‌شود.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.

شکل ۱ دیاگرام سرعت‌ها در مقطع پره را نشان می‌دهد.
Table 1 ONERA stall dynamic coefficient

<table>
<thead>
<tr>
<th>λ_l</th>
<th>κ_l</th>
<th>s_l</th>
<th>a_0</th>
<th>a_2</th>
<th>r_0</th>
<th>r_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>-2.86</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 2 Pitch controlled wind turbines

<table>
<thead>
<tr>
<th>C_l 1</th>
<th>C_l 2</th>
<th>C_l 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[\Delta C_l(t) = \Delta C_l(t_0) + \Delta C_l(t_1) - \Delta C_l(t_2) \]
\[\beta = \frac{\Delta C_l(t)}{\Delta C_l(t_0)} \]
\[C_{i2}^{n+1} = \frac{(\Delta s)^n}{1 + a_n \Delta s} \left[-r_n^2 n G_{12}^n - r_n n G_{12}^n \right] \]
\[+ \frac{a_n C_{i2}^n}{(\Delta s)^n} \left[\frac{2 G_{i2}^n}{(\Delta s)^2} \right] \]
\[- \frac{C_{i2}^{n-1}}{(\Delta s)^2} \]
\[R = \lambda_k G_{pot} + (\lambda_k G_s + \lambda_i) \alpha + S_i \]
\[\text{Fig. 2 Wind turbine at yaw condition} \]
\[\text{Compute local angle of attack, } \alpha \text{ and read aerodynamic coefficients from [15]} \]
\[\text{Modify aerodynamic coefficients using ONERA dynamic stall model} \]
\[\text{Compute local loads on the blade element} \]
\[\text{Recalculate } \alpha \text{ and } \alpha' \text{ and compute local elastic pitching} \]
\[\text{Report} \]
\[C_{i1} = \frac{1}{\lambda_k} \left[R - (R - \lambda_k G_{stat}) e^{-\lambda_k t} \right] \]
\[1 \]
\[Tjaereborg \]
6-2- بررسی عملکرد توربین در شرایط تغییر ناگهانی سرعت باد به کمک الگو و اندازک دینامیکی در رخت قبل از ضرایب امکاناتی استاتیکی استفاده شده بود زیرا گرادیان شدید سرعت در شکل 6 استفاده از الگوی و اندازک دینامیکی را دچار مشکل می‌کند. چرا که گرادیان زاویه‌بندی جمله در این شرایط نامحدود شده و مقادیر بندست آمده از رابطه (21) غیرقابل خواهند بود. بنابراین
سپاس از نظر خوب و پیاده سازی این پروژه در مقیاس بالینی

Fig. 8 Second wind speed function

Fig. 9 Elastic torsion of blade tip and rotor power, rotational speed 10 rpm, with dynamic stall model

Fig. 10 Wind speed profiles

Fig. 11 Different wind speed profile effect on wind turbine power
Fig. 14 Velocity diagram for a rotor blade section in yaw condition

Fig. 12 Yaw effect on wind turbine power in steady condition

Fig. 13 Yaw effect on wind turbine power in steady condition

- 7 -

- 9 -

