Numerical analysis of the performance of four-sided wind tower attached to parlor and courtyard in different wind incident angles

Hossein Dehghani Mohammadabadi¹, Seyed Abbas Yazdanfar¹, Ali Akbar Dehghan², Abolfazl Dehghani Mohammadabadi³

¹- School Of Architecture and Environmental Design, Iran University of Science and Technology, Tehran, Iran
²- Department of Mechanical Engineering, Yazd University, Yazd, Iran
³- School of Architecture and Environmental Design, Yazd University, Yazd, Iran
⁴- P.O.B. 89195-741 Iran, Yazd. Iran. adehghan@yazd.ac.ir

ABSTRACT

In this study, hydrodynamic behavior of four-sided wind tower attached to parlor and courtyard of a scaled model from existing historical house with wind incident angle as variable was numerically investigated. Hazire-et house wind tower, which has six channels with rectangular cross section, integrated with parlor and courtyard is considered among the most typical ones in the vernacular architecture of Yazd city. This article seeks to investigate the performance of four-sided wind tower regarding suction and supply amount of air, and the way it was used as a vernacular solution for natural ventilation in order to provide engineers with design guidelines for contemporary use. Numerical study was conducted on a 1:23 scaled model and for 13 wind incident angles with 15 degree intervals. Interested parameters are mass flow rate and flow direction in each channel. A structured mesh was generated and ANSYS Fluent software was used for numerical simulation. Numerical modeling results were validated against experimental tests conducted on the same scaled model and good agreement was observed. Results indicate that in 61.5% of incident angels, four-sided wind tower acts to draw the air vented from indoor spaces within the house and in other incident angels with approximately equal amount of supply and extract rate, four-sided wind tower in dry regions of Iran are mostly employed for heat dissipation rather than inducing outdoor cool breezes.

Please cite this article using:

4 Short circuit

126

12

9

11

10

13

8

76

8

1:70

32%

f

12

10

9

8

7

6

5

4

3

2

1

2:30

3.5

1.70

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1
نمونه می‌دانیم خانه شامل دو شیفت نیست و سریع‌تری نیست.

صیغه‌ی طراحی شما شامل عناوین دورهای باد است و به صورتی بادکنک نیست. این بادکنک یک بادکنک گردانه‌ای است که به سطح خشک فیزیکی رسیده است.

اثری ندارد.

نمونه می‌دانیم خانه شامل دو شیفت نیست و سریع‌تری نیست.

به‌طور کل، این مطالعه نشان می‌دهد دیگرکاری‌ها مورد شده در مورد بادکنک عموماً محدود است و به‌طور کلی به صورتی بادکنک نیست.

احیاء شده شد.

دسته‌بندی مورد بررسی

شکل 1 نمونه مورد بررسی

شکل 2- روش حل

در این بخش، در روش شیمی‌سازی و تحلیل عدیدی برای مدل عملکرد بادگیر سخت‌ترین است که به اندازه گرفتن و بزرگی بادکنک نسبت به دیگر بادکنک‌ها در نظر گرفته شده است.

روش محلول

8 Reynolds Averaged Navier Stokes (RANS)

\[
\frac{\partial u}{\partial t} + \nabla \times (\rho u u) = -\nabla p + \rho g + \nabla \times (\mu \nabla u) - \nabla \cdot \tau
\]
جدول ۱ مشخصات سطحی و ابعاد بخش های مختلف مدل

<table>
<thead>
<tr>
<th>نویسندگان</th>
<th>(L-W-H)</th>
<th>ابعاد (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بادگیر</td>
<td>12.5-51</td>
<td></td>
</tr>
<tr>
<td>کال‌ها</td>
<td>2.2-4-35.2</td>
<td></td>
</tr>
<tr>
<td>پارامترهای ورودی</td>
<td>15.8-2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.8-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.1-6.5-8.6</td>
<td></td>
</tr>
<tr>
<td>انتقال زیر بادگیر</td>
<td>21.7-15.8-19.4</td>
<td></td>
</tr>
<tr>
<td>ناتال</td>
<td>52-39-27</td>
<td></td>
</tr>
</tbody>
</table>

شرایط مرزی

از آنجا که در این مطالعه، برای حل نحوه تغییرات دقت کافی و کمیت نتایج زیرآتی ۱/۲، استفاده از شرایط مرزی سطح، در سطح مدل، برای عناصر مدل، عناصر، ماتریس، ماتریس و ماتریس

<table>
<thead>
<tr>
<th>شرایط مرزی</th>
<th>درون</th>
<th>خارج</th>
<th>دیواره</th>
<th>دیواره</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Velocity inlet</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Turbulence intensity (I)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pressure outlet</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Slip</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

شکل ۳

**شکل ۳ سیستمیک ساختمانی برای فلز محاسباتی

**شکل ۴

**شکل ۴ بررسی جلس مشقی از شکه

**شکل ۲

**شکل ۲ شرایط مرزی

*یکدن نمونه به ایزی تغییر دادن شکه از 7300000 به 10000000 تغییر چندی در مقدار دیده می‌شود. لذا شکه با تغییر سطح 7300000 به‌عنوان شکه ملی برای ایزی محاسباتی تغییر می‌شود.

128
زوایای مانند زاویه حمله 45 درجه که جریان به طور مایل به بادکنار برخورد می‌کنند، شکل جریان در کانال‌ها به دو بود و بسته به خصوصیات گردباد، در شبیه‌سازی رسم شده است. در این شرایط اندام‌گریزی شتر نتوانست بهفعل اجرا کرده باشد. اگر جهت است که به گونه‌ای در کانال را کاملاً در نظر نگرفت که راستای جریان بر دهانه آن وضعیت باشد.}

3. مقایسه نتایج

در این مطالعه برای صحت‌سنجی نتایج شبیه‌سازی از نتایج آزمایش‌های تجربی تولید که در زاویه‌ای مختلف حمله با فاصله 15 درجه صورت گرفته، استفاده شده است. از میان این زاویا، تنظیم نتایج در و سوا به ترتیب به صورت 90 و 180 درجه گرفته است.

شکل 6 مقارنگی نتایج شبیه‌سازی در زاویه حمله صفر

شکل 7 مقارنگی نتایج شبیه‌سازی در زاویه حمله 90 درجه

شکل 8 مقارنگی نتایج شبیه‌سازی در زاویه حمله 180 درجه

fig. 6 Comparison of current study and experiment results in zero wind incident angle

fig. 7 Comparison of current study and experiment results in 90° wind incident angle

fig. 8 Comparison of current study and experiment results in 180° wind incident angle

fig. 9 Comparison of current study and experiment results in 180° wind incident angle

fig. 10 Location of pitots and statics in all windcatcher channels

p - \rho = \frac{1}{2} \rho V^2

در "شکل‌های 7 و 8" مقایسه سرعت متوسط اندام‌گریزی هشدار در کانال‌های شترکن بادکنار در آزمایش طول باد و مطالعه‌ای ارائه شده‌اند. بنابراین میزان اختلاف بین مقایسه حاصل از شبیه‌سازی‌های تجربی و نتایج تجربی 17.7 درصد است که در زاویه حمله 45 درجه دیده می‌شود علت این

1 Wall y plus
جراحی به سمت اتقاط حرکت می‌کند، همچنین در هدایته جانی و پشت به یاد باشد که یک گروه فشار کمی که در زاویه حرکتی که یک گروه فشار کمی که در زاویه چرخش حرکت یک گروه فشار کمی که در زاویه چرخش حرکت یک گروه فشار کمی که در

نتایج

در این بخش از مطالعه جنبشی و نتایج شیب‌سازی عامل تأثیر بر هزینه دیگر ورودی کمی‌بندی‌های بادکی در گردوهای زیر دسته‌بندی کرد.
Fig. 10 Comparison of extract and total supply flow rate of windcatcher channels in all wind incident angels

Fig. 11 Contour of z velocity (m/s) in cross sections of windcatcher at zero wind incident angel

شکل 10 مقایسه دیواره‌های ورودی کانال‌های باگری در تمام زوایای حمله باد

شکل 11 کانتر سرعت (m/s) در راستای محور دائم در مقاطع طولی باگری برای راهی حمله باد

رفتار جریان در این دو زاویه شناسی است. عملکرد باگری از زاویه 30 به 45 درجه دچار تغییر اساسی می‌شود. جریان از باگرها E3 و E1 از مبدا (جدول 3) وجوه را تحت فشار مشبک و جریان و F1، F2 و F3 و F4 را تحت فشار مشبک قرار می‌دهد. شکل 11 بین سطح کانال C1 و 1395، 16 شماره 131

شکل 11 دانش‌ها در کنتر سرعت در راستای محور دائم برای مقاطع عمودی و افقی باگری در زاویه حمله باد با کنتر سرعت در داخل باگری، عملکرد مشابه یا دستی بهترین کانال‌ها و محتوی ناگهانی انداره‌گیری سرعت در آزادی را دارد، کانترها در محل ارائه کنترها (مصرف قطع کریکی) نشان می‌دهد، در قسمت بالای "شکل 11" دو برش عمودی و در قسمت

شکل 12 "شکل 12" در زاویه 90 درجه دو کانال C6 و C1 و C4 و C0 مصرف چرخشی عمل می‌کند. نشان دهنده عملکرد باگری در زاویه 90 درجه نشان می‌دهد که در زاویه 90 درجه کانال C6 و C0 عمل کنتر گرایی بارشی 75 درجه کانال C2 و C6 در زاویه 105 درجه کانال C5 کنترگرایی بارشی محسوس می‌کند.

شکل 12 "شکل 12" در زاویه 90 درجه دو کانال C6 و C1 و C4 و C0 مصرف چرخشی عمل می‌کند. نشان دهنده عملکرد باگری در زاویه 90 درجه نشان می‌دهد که در زاویه 90 درجه کانال C6 و C0 عمل کنتر گرایی بارشی 75 درجه کانال C2 و C6 در زاویه 105 درجه کانال C5 کنترگرایی بارشی محسوس می‌کند.

شکل 12 "شکل 12" در زاویه 90 درجه دو کانال C6 و C1 و C4 و C0 مصرف چرخشی عمل می‌کند. نشان دهنده عملکرد باگری در زاویه 90 درجه نشان می‌دهد که در زاویه 90 درجه کانال C6 و C0 عمل کنتر گرایی بارشی 75 درجه کانال C2 و C6 در زاویه 105 درجه کانال C5 کنترگرایی بارشی محسوس می‌کند.

شکل 12 "شکل 12" در زاویه 90 درجه دو کانال C6 و C1 و C4 و C0 مصرف چرخشی عمل می‌کند. نشان دهنده عملکرد باگری در زاویه 90 درجه نشان می‌دهد که در زاویه 90 درجه کانال C6 و C0 عمل کنتر گرایی بارشی 75 درجه کانال C2 و C6 در زاویه 105 درجه کانال C5 کنترگرایی بارشی محسوس می‌کند.
۱- در این دو زاویه مکانیکی آزاد، شرایط مکانیکی عامل میدن. در این دو زاویای جریان به ویژه در بخش F2 و F1 از فرآیند انباشت به نشانه کمتر در این دو زاویه مکانیکی، مکان Q را می‌توان از این دو زاویا به‌دست آورد.

۲- مکان Q را می‌توان در حالت برابر در نقطه مکانیکی عمل کننده دو- زاویای ۱۲۰ و ۱۳۵ درجه از نظر شبکه‌ی جریان در اطراف بادگیر به‌ترتیب قرضه‌ی زاویای ۶۰ و ۴۵ درجه معدد است. ما مبدا به نظر نیازمند در این دو زاویه فضایی خودرو و کاهش دانمی که مشخص می‌شود که به شکل F3 و F4 از میدان شتافت مثبت به دنده نارال رخ می‌دهد. اکنون مشخص می‌شود در کاربرد این دو زاویه به‌بیانی از هنگامی برخوردار باشد تا به آن‌ها در عملکرد بادگیر و همچنین جهت جریان از بادگیر به ناک و بی‌غش می‌تواند باشد.

۳- این دو زاویای ۱۵۰ و ۱۸۰ درجه در این دو نسبت به دو زاویه قبل تغییر عمده صورت می‌گیرد. و زاویه در این دو زاویه جریان به ویژه در B1 و C1 از آن‌ها در عملکرد بادگیر و جریان مثبت می‌باشد. معکور بادک (F2) سپس از جریان در این دو زاویه مشخص می‌شود که به‌عنوان F1 و F2 از میدان شتافت مثبت به دنده نارال می‌دهد. اکنون مشخص می‌شود که در کاربرد این دو زاویه به‌بیانی از هنگامی برخوردار باشد تا به آن‌ها در عملکرد بادگیر و همچنین جهت جریان از بادگیر به ناک و بی‌غش می‌تواند باشد.

۴- از نظر شبکه‌ی جریان در اطراف بادگیر، زاویای ۱۰۵ و ۷۵ درجه برنده دانه نارال به ترتیب تحت شرایط مثبت است. این است و تصویب می‌شود.

۵- زاویای ۱۴۵، ۱۶۵ و ۱۸۰ درجه

۶- بیاین‌داشتهای عبارت از:

گزارش در Z30 صفحه‌ی ۱۲، ۱۸ و ۱۹ در مورد موارد ممکن مطرح شده‌اند.

فیگور ۱۲: مقطعی از سطحی در مورد بالای بادگیر

شکل ۲ پارامتر سرعت (m/s) در راستای محور قائم در مقاله‌ی باکره‌ی بادگیر برای زاویه حمله ۹۰ درجه.
در این مطالعه رفتار بادگیر چهارجههی متصل به تالر و حباب مکسی در یک بنای موج و در حال استفاده در کشور مکسی ایران در قالب تحلیل عددی با ناحیه‌ی زاویه حمله محدود بررسی گردید. این مدل به هدف آشنایی با رفتار بادگیر چهارجههی یک نظر میزان مکسی و حباب و نحوه استفاده از ها به عنوان راهکاری بهبود بررسی ساختار تکمیلی بایست. این مطالعه در کشورهای بزرگی از بادگیر وارد نمی‌شود. نتایج عددی مکسی به دست آمده در این زاویه با ترتیب 4.07 و 3.90 است که می‌تواند در این زاویه بادگیر را در حالت بالینی، در کارایی کرک مکسی نماید.

7- نتوجه گری

در این مطالعه، رفتار بادگیر چهارجههی متصل به تالر و حباب مکسی در یک بنای موج و در حال استفاده در کشور مکسی ایران در قالب تحلیل عددی با ناحیه‌ی زاویه حمله محدود بررسی گردید. این مدل به هدف آشنایی با رفتار بادگیر چهارجههی یک نظر میزان مکسی و حباب و نحوه استفاده از ها به عنوان راهکاری بهبود بررسی ساختار تکمیلی بایست.

شکل 13: کشش سرعت (m/s) در راستای محور قطری در مقاطع طولی بادگیر با

رازیه حمله 180 درجه

شکل 14: مقایسه کلی توده بازخورش و ورودی بادگیر در تمام راژگرهای باد

پس از زاویه 45 و 60 درجه نسبت دی این مکسی به دست آمده در این زاویه بادگیر یک نظر تجربی بهبود بررسی ساختار تکمیلی بایست.

شکل 14: مقایسه کلی توده بازخورش و ورودی بادگیر در تمام راژگرهای باد

پس از زاویه 45 و 60 درجه نسبت دی این مکسی به دست آمده در این زاویه بادگیر یک نظر تجربی بهبود بررسی ساختار تکمیلی بایست.

شکل 14: مقایسه کلی توده بازخورش و ورودی بادگیر در تمام راژگرهای باد

پس از زاویه 45 و 60 درجه نسبت دی این مکسی به دست آمده در این زاویه بادگیر یک نظر تجربی بهبود بررسی ساختار تکمیلی بایست.

شکل 14: مقایسه کلی توده بازخورش و ورودی بادگیر در تمام راژگرهای باد

پس از زاویه 45 و 60 درجه نسبت دی این مکسی به دست آمده در این زاویه بادگیر یک نظر تجربی بهبود بررسی ساختار تکمیلی بایست.
6- نتایج همچنین نشان می‌دهد که با دیدار با ناآرامی خشک و هیتروکوست‌های مختلفی به همراه برخورد جریان نفس تعیین کننده در فرآیند هیدرودینامیکی با دیگر دارد.

7- مراهک

8- هشتم علوم

9- تنک و قدِردانی

10- مراجع