مهندسی مکانیک مدرس

مهندسی مکانیک مدرس

بررسی تجربی ناهمسانگردی در لوله فولادی ایکس شصت‌و‌پنچ با استفاده از انرژی شکست شارپی

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشگاه بیرجند
2 دانشگاه پیام نور
چکیده
به‌منظور استفاده از ظرفیت‌های بالاتر در سامانه­های انتقال انرژی ایران، لوله‌های استاندارد­شده API از جنس فولاد API X65 موردتوجه قرارگرفته است. جهت دست­یابی به سطوح استحکام موردنیاز، استفاده از فرآیند نورد کنترل­شده ترمومکانیکی اجتناب­ناپذیر است. این فرآیند ذاتاً خواص مواد ناهمسانگرد را در ورق لوله فولادی ایجاد می‌کند. علاوه­بر­این، تولید لوله جوشکاری­شده مارپیچ شامل مراحلی است که می‌تواند منجر به ایجاد خواص مکانیکی متفاوتی در جهات مختلف شود. هدف تحقیق حاضر این است که وابستگی به جهت انرژی شکست شارپی، اندازه­گیری شود. از این­رو، اثر تغییر زاویه نمونه استخراجی نسبت به جهت نورد و همچنین اثر تغییر جهت شیار نمونه شارپی (در کل سه جهت شیار A، B و C) بر انرژی شکست فولاد API X65 به­صورت تجربی بررسی شده است. بیشترین تغییرات میانگین انرژی شکست شارپی در زوایای مختلف نسبت به جهت نورد، حداکثر 13 درصد است (در جهت شیار B) ولی بیشترین تغییرات میانگین انرژی شکست شارپی بین جهت‌های شیار مختلف، حداکثر 2/12 درصد است (در زاویه صفر درجه). در نتیجه اثر تغییر زاویه نمونه استخراجی نسبت به جهت نورد بر روی انرژی شکست شارپی، بیشتر از اثر تغییر جهت شیار نمونه است. همچنین، در زاویه 5/67 درجه نسبت به جهت نورد (معادل با جهت قطری لوله)، بیشترین انرژی شکست برای تمامی جهات شیار حاصل شد. بنابراین می­توان انتظار داشت که در جهت قطری لوله، احتمال ایجاد و رشد ترک تحت بار ضربه­ای کمتر باشد. به­منظور مقایسه کمّی تغییرات انرژی شکست در جهات شیار متفاوت، برای نخستین بار شاخصی با عنوان شاخص ناهمسانگردی تعریف و ارائه شده است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental investigation of anisotropy in API X65 steel pipe using Charpy fracture energy

نویسندگان English

Mojtaba Shojaeddin 1
Sayyed Hashemi 1
Ali Akbar Majidi-Jirandehi 2
1 University of Birjand
2 Payame Noor University
چکیده English

To use higher capacities in Iran's energy transmission systems, API standardized pipes made of API X65 steel have been utilized (made of thermo-mechanically controlled rolling process, TMCR steels). The TMCR inherently increases the anisotropic properties of steel coils and plates used for pipe manufacturing. In addition, the production of helical welded pipe involves steps that can lead to different mechanical properties in different directions. The aim of the present study is to measure the orientation dependence of the Charpy fracture energy. Therefore, the effect of changing the angle of specimens relative to the rolling direction and also the effect of changing the notch orientation (three notch A, B and C in total) on the fracture energy in API X65 steel has been experimentally determined. The maximum change in the average Charpy fracture energy at different angles relative to the rolling direction is a maximum of 13% (in notch B), but the largest change in the average Charpy fracture energy between different notches is a maximum of 12.2% (at an angle of 0 °). As a result, the effect of changing the angle of the specimen relative to the rolling direction is greater than the effect of changing the notch orientation on the Charpy fracture energy. Also, at an angle of 67.5 degrees to the direction of rolling (equivalent to the diagonal direction (D-D)), the most fracture energy for all notches was obtained. To quantitatively compare the fracture energy changes in different notches, an index called anisotropy index has been presented

کلیدواژه‌ها English

Charpy Impact Test
Anisotropy
Fracture Energy
Gas Transportation Pipeline
API X65 steel
API Specifications, 5L (2007) Specifications for line pipe. American Petroleum Institute, Washington, DC.
API Specifications, 5L (2007) Specifications for line pipe. American Petroleum Institute, Washington, DC.
Rothwell, A., Fracture propagation control for gas pipelines-past, present and future. Pipeline Technology, 2000. 1: p. 387-405.
Rothwell, A., Fracture propagation control for gas pipelines-past, present and future. Pipeline Technology, 2000. 1: p. 387-405.
Han, S.Y., et al., Effects of Mo, Cr, and V additions on tensile and Charpy impact properties of API X80 pipeline steels. Metallurgical and Materials Transactions A, 2009. 40(8): p. 1851. [DOI:10.1007/s11661-009-9884-3]
Han, S.Y., et al., Effects of Mo, Cr, and V additions on tensile and Charpy impact properties of API X80 pipeline steels. Metallurgical and Materials Transactions A, 2009. 40(8): p. 1851. [DOI:10.1007/s11661-009-9884-3]
Van Minnebruggen, K., Experimental-numerical study on the feasibility of spirally welded pipes in a strain based design context. 2016, Ghent University.
Van Minnebruggen, K., Experimental-numerical study on the feasibility of spirally welded pipes in a strain based design context. 2016, Ghent University.
Akbarzadeh., A., Effect of thermomechanical processing on microstructure, texture, and anisotropy in two Nb microalloyed steels. PhD thesis, 1997. McGill University.
Akbarzadeh., A., Effect of thermomechanical processing on microstructure, texture, and anisotropy in two Nb microalloyed steels. PhD thesis, 1997. McGill University.
Mourino., N.S., Crystallographically Controlled Mechanical Anisotropy of Pipeline Steel. PhD thesis, 2011. Ghent University.
Mourino., N.S., Crystallographically Controlled Mechanical Anisotropy of Pipeline Steel. PhD thesis, 2011. Ghent University.
Al-Jabr, H.M., Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination. 2016: Colorado School of Mines.
Al-Jabr, H.M., Influence of crystallographic texture in X70 pipeline steels on toughness anisotropy and delamination. 2016: Colorado School of Mines.
Chen, M.-Y., D. Linkens, and A. Bannister, Numerical analysis of factors influencing Charpy impact properties of TMCR structural steels using fuzzy modelling. Materials science and technology, 2004. 20(5): p. 627-633. [DOI:10.1179/026708304225016734]
Chen, M.-Y., D. Linkens, and A. Bannister, Numerical analysis of factors influencing Charpy impact properties of TMCR structural steels using fuzzy modelling. Materials science and technology, 2004. 20(5): p. 627-633. [DOI:10.1179/026708304225016734]
ع. ا. مجیدی جیرندهی و س. حجت هاشمی، بررسی ویژگیهای مرئی سطح شکست درزجوش مارپیچ در لوله فولادی انتقال گاز از نوع فولاد API X65، مجله مهندسی مکانیک دانشگاه تربیت مدرس، سال 1396، 17(11).
ع. ا. مجیدی جیرندهی و س. حجت هاشمی، بررسی ویژگیهای مرئی سطح شکست درزجوش مارپیچ در لوله فولادی انتقال گاز از نوع فولاد API X65، مجله مهندسی مکانیک دانشگاه تربیت مدرس، سال 1396، 17(11).
Toth, L., H.-P. Rossmanith, and T.A. Siewert, Historical background and development of the Charpy test. European Structural Integrity Society, 2002. 30: p. 3-19. [DOI:10.1016/S1566-1369(02)80002-4]
Toth, L., H.-P. Rossmanith, and T.A. Siewert, Historical background and development of the Charpy test. European Structural Integrity Society, 2002. 30: p. 3-19. [DOI:10.1016/S1566-1369(02)80002-4]
Mohan, R., et al., Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe. Battelle, Columbus, OH, Report No. NUREG/CR-6299 (BMI-2184), 1995. [DOI:10.2172/64038]
Mohan, R., et al., Effects of toughness anisotropy and combined tension, torsion, and bending loads on fracture behavior of ferritic nuclear pipe. Battelle, Columbus, OH, Report No. NUREG/CR-6299 (BMI-2184), 1995. [DOI:10.2172/64038]
García, O.L., et al. Microstructure-Texture Related Toughness Anisotropy of API-X80 Pipeline Steel. in Advanced Materials Research. 2007. Trans Tech Publ. [DOI:10.4028/0-87849-429-4.840]
García, O.L., et al. Microstructure-Texture Related Toughness Anisotropy of API-X80 Pipeline Steel. in Advanced Materials Research. 2007. Trans Tech Publ. [DOI:10.4028/0-87849-429-4.840]
Joo, M.S., Anisotropy of charpy properties in linepipe steels. 2012, PhD thesis, Pohang University of Science and Technology, Pohang, Korea.
Joo, M.S., Anisotropy of charpy properties in linepipe steels. 2012, PhD thesis, Pohang University of Science and Technology, Pohang, Korea.
Mourino, N.S., et al., Texture dependent mechanical anisotropy of X80 pipeline steel. Advanced Engineering Materials, 2010. 12(10): p. 973-980. [DOI:10.1002/adem.201000065]
Mourino, N.S., et al., Texture dependent mechanical anisotropy of X80 pipeline steel. Advanced Engineering Materials, 2010. 12(10): p. 973-980. [DOI:10.1002/adem.201000065]
Reip, C., S. Shanmugam, and R. Misra, High strength microalloyed CMn (V-Nb-Ti) and CMn (V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, Precipitation and Mechanical Properties. Materials Science and Engineering: A, 2006. 424(1-2): p. 307-317. [DOI:10.1016/j.msea.2006.03.026]
Reip, C., S. Shanmugam, and R. Misra, High strength microalloyed CMn (V-Nb-Ti) and CMn (V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, Precipitation and Mechanical Properties. Materials Science and Engineering: A, 2006. 424(1-2): p. 307-317. [DOI:10.1016/j.msea.2006.03.026]
Hashemi, S. and D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping, 2012. 98: p. 8-15. [DOI:10.1016/j.ijpvp.2012.05.011]
Hashemi, S. and D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. International Journal of Pressure Vessels and Piping, 2012. 98: p. 8-15. [DOI:10.1016/j.ijpvp.2012.05.011]
Standard, A., E23-07,". Standard Test Methods for Notched Bar Impact Testing of Metallic Materials," Annval Book of ASTM Standards, 2007.
Standard, A., E23-07,". Standard Test Methods for Notched Bar Impact Testing of Metallic Materials," Annval Book of ASTM Standards, 2007.
ASTM, A., 20/A20M-99a. 1999. Standard Specification for General Requirements for Steel Plates for Pressure Vessels.
ASTM, A., 20/A20M-99a. 1999. Standard Specification for General Requirements for Steel Plates for Pressure Vessels.
Baker, T., F. Kavishe, and J. Wilson, Effect of non-metallic inclusions on cleavage fracture. Materials science and technology, 1986. 2(6): p. 576-582. [DOI:10.1179/mst.1986.2.6.576]
Baker, T., F. Kavishe, and J. Wilson, Effect of non-metallic inclusions on cleavage fracture. Materials science and technology, 1986. 2(6): p. 576-582. [DOI:10.1179/mst.1986.2.6.576]
Hodge, J., R. Frazier, and F. Boulger, The effects of sulfur on the notch toughness of heat-treated steels. transactions of the american institute of mining and metallurgical engineers, 1959. 215(5): p. 745-753.
Hodge, J., R. Frazier, and F. Boulger, The effects of sulfur on the notch toughness of heat-treated steels. transactions of the american institute of mining and metallurgical engineers, 1959. 215(5): p. 745-753.
Matrosov, Y.I. and I. Polyakov, Increasing the toughness and ductility and decreasing the property anisotropy of low-alloy steels. Stal, 1976. 2: p. 162-167.
Matrosov, Y.I. and I. Polyakov, Increasing the toughness and ductility and decreasing the property anisotropy of low-alloy steels. Stal, 1976. 2: p. 162-167.
Joo, M., et al., Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. Materials Science and Engineering: A, 2012. 546: p. 314-322. [DOI:10.1016/j.msea.2012.03.079]
Joo, M., et al., Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. Materials Science and Engineering: A, 2012. 546: p. 314-322. [DOI:10.1016/j.msea.2012.03.079]
Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 9. 2018: Wiley New York.
Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 9. 2018: Wiley New York.