Volume 22, Issue 9 (September 2022)                   Modares Mechanical Engineering 2022, 22(9): 567-577 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseinzadeh M, Ghoreishi M, Narooei K. Investigation of the Effect of 3D Printing Parameters on the Bending Shape Recovery in 4D Printing Process. Modares Mechanical Engineering 2022; 22 (9) :567-577
URL: http://mme.modares.ac.ir/article-15-58880-en.html
1- Mechanical Engineering Department - K. N. Toosi University of Technology , m.hadi.hosseinzadeh@gmail.com
2- Mechanical Engineering Department - K. N. Toosi University of Technology
3- Materials Science and Engineering Department - K. N. Toosi University of Technology
Abstract:   (1712 Views)
4D printing is an emerging phenomenon of additive manufacturing which is achieved by the 3D printing of shape memory materials. The printed parts can change their shapes when exposed to an external stimulus by controlling the 4D printing process. In this study, a relationship between applied pre-stress in the printing process and the amount of bending shape recovery was obtained using numerical simulations. Then, the effect of printing parameters of fused deposition modeling including layer thickness, printing speed, and nozzle diameter on the applied pre-stress in the printed polylactic acid parts was investigated. To reduce the cost and time as well as to increase the validity and accuracy, the central composite design method was used. Seventeen experimental tests were performed and a model was obtained between the mentioned parameters and applied pre-stress. In the following, R2 and Adj R2 of the model were obtained above 0.99 and 0.98, respectively, which indicates the high accuracy of the model. The model showed that the layer height, nozzle diameter, and printing speed have a significant effect on the applied pre-stress. Also, the applied pre-stress is inversely related to the layer height, nozzle diameter and is directly related to the printing speed. Simulations were performed under the conditions of maximum bending shape recovery and compared with the experimental model. The results showed that the error of the relationship between applied pre-stress and amount of shape recovery is 1.5% and the experimental model of printing parameters effect on the shape recovery is completely matched.
Full-Text [PDF 1023 kb]   (838 Downloads)    
Article Type: Original Research | Subject: Build add-on
Received: 2022/01/21 | Accepted: 2022/04/24 | Published: 2022/09/1

References
1. [1] Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 2018;11(4):519. [DOI:10.3390/ma11040519]
2. [2] Shahrubudin N, Lee TC, Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manufacturing. 2019;35:1286-96. [DOI:10.1016/j.promfg.2019.06.089]
3. [3] Bodaghi M, Noroozi R, Zolfagharian A, Fotouhi M, Norouzi S. 4D printing self-morphing structures. Materials. 2019;12(8):1353. [DOI:10.3390/ma12081353]
4. [4] قرشی, صادق‌یزدی, حسین‌زاده, موسوی‌کانی. مطالعه اثر سرعت اسکن و توان لیزر بر حوضچه مذاب در فرآیند ذوب انتخابی لیزر به کمک معادلات حرکت مذاب برای Ti6Al4V. فصلنامه مکانیک هوافضا. 2021;17(3):1-15.
5. [5] Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B, et al. Active Printed Materials for Complex Self-Evolving Deformations. Scientific Reports. 2014;4(1):7422. [DOI:10.1038/srep07422]
6. [6] Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. Journal of Materials Chemistry B. 2020;8(15):2930-50. [DOI:10.1039/D0TB00034E]
7. [7] Savastano M, Amendola C, Fabrizio D, Massaroni E. 3-D printing in the spare parts supply chain: an explorative study in the automotive industry. Digitally supported innovation: Springer; 2016. p. 153-70. [DOI:10.1007/978-3-319-40265-9_11]
8. [8] Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I, Kim K-H, et al. 3D printing for soft robotics-a review. Science and technology of advanced materials. 2018;19(1):243-62. [DOI:10.1080/14686996.2018.1431862]
9. [9] Joshi SC, Sheikh AA. 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping. 2015;10(4):175-85. [DOI:10.1080/17452759.2015.1111519]
10. [10] Tibbits S, editor The emergence of "4D printing". TED conference; 2013.
11. [11] Zafar MQ, Zhao H. 4D printing: future insight in additive manufacturing. Metals and Materials International. 2019:1-22. [DOI:10.1007/s12540-019-00441-w]
12. [12] Momeni F, Liu X, Ni J. A review of 4D printing. Materials & Design. 2017;122:42-79. [DOI:10.1016/j.matdes.2017.02.068]
13. [13] Xie T. Tunable polymer multi-shape memory effect. Nature. 2010;464(7286):267. [DOI:10.1038/nature08863]
14. [14] Yu K, Ge Q, Qi HJ. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nature communications. 2014;5:3066. [DOI:10.1038/ncomms4066]
15. [15] Hong S, Sycks D, Chan HF, Lin S, Lopez GP, Guilak F, et al. 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced materials. 2015;27(27):4035-40. https://doi.org/10.1002/adma.201570182 [DOI:10.1002/adma.201501099]
16. [16] Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature. 2016;536(7617):451. [DOI:10.1038/nature19100]
17. [17] Zhou Y, Huang WM, Kang SF, Wu XL, Lu HB, Fu J, et al. From 3D to 4D printing: approaches and typical applications. Journal of Mechanical Science and Technology. 2015;29(10):4281-8. [DOI:10.1007/s12206-015-0925-0]
18. [18] Mousavi Kani SM, Sadegh Yazdi M, Hosseinzadeh MH. Influence of infill density and printing pattern on flexural properties of 3D printed short carbon fiber PLA composite. Iranian Journal of Manufacturing Engineering. 2020;7(9):42-51.
19. [19] حیدری‌رارانی, صادقی, عزتی. مطالعه تجربی تاثیر پارامترهای مختلف ساخت بر خواص کششی نمونه‌های PLA چاپ‌شده به روش مدل‌سازی رسوب ذوب‌شده. علوم و فناوری کامپوزیت. 2020;7(2):855-62.
20. [20] Heidari-Rarani M, Ezati N, Sadeghi P, Badrossamay M. Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. Journal of Thermoplastic Composite Materials. 2020:0892705720964560. [DOI:10.1177/0892705720964560]
21. [21] Carrell J, Gruss G, Gomez E. Four-dimensional printing using fused-deposition modeling: a review. Rapid Prototyping Journal. 2020;26(5):855-69. [DOI:10.1108/RPJ-12-2018-0305]
22. [22] Solomon IJ, Sevvel P, Gunasekaran J. A review on the various processing parameters in FDM. Materials Today: Proceedings. 2021;37:509-14. [DOI:10.1016/j.matpr.2020.05.484]
23. [23] Hosseinzadeh M, Ghoreishi M, Narooei K. An investigation into the effect of thermal variables on the 3D printed shape memory polymer structures with different geometries. Journal of Intelligent Material Systems and Structures. 2021:1045389X211028286. [DOI:10.1177/1045389X211028286]
24. [24] Bodaghi M, Damanpack AR, Liao WH. Adaptive metamaterials by functionally graded 4D printing. Materials & Design. 2017;135:26-36. [DOI:10.1016/j.matdes.2017.08.069]
25. [25] van Manen T, Janbaz S, Zadpoor AA. Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons. 2017;4(6):1064-9. [DOI:10.1039/C7MH00269F]
26. [26] Rajkumar AR, Shanmugam K. Additive manufacturing-enabled shape transformations via FFF 4D printing. Journal of Materials Research. 2018;33(24):4362-76. [DOI:10.1557/jmr.2018.397]
27. [27] Jamshidi M, Salimi Nezhad I, Golzar M, Behravesh AH. Investigation of the Effect of 3D printing parameters on shape-shifting of flat sturctures to Three-Dimensional Shapes. Journal of Science and Technology of Composites. 2021;7(4):1271-8.
28. [28] Akhoundi B, Nabipour M, Hajami F, Shakoori D. An Experimental Study of Nozzle Temperature and Heat Treatment (Annealing) Effects on Mechanical Properties of High‐Temperature Polylactic Acid in Fused Deposition Modeling. Polymer Engineering & Science. 2020;60(5):979-87. [DOI:10.1002/pen.25353]
29. [29] Roudbarian N, Baniasadi M, Ansari M, Baghani M. An experimental investigation on structural design of shape memory polymers. Smart Materials and Structures. 2019;28(9):095017. [DOI:10.1088/1361-665X/ab3246]
30. [30] Arrieta S, Diani J, Gilormini P. Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mechanics of materials. 2014;68:95-103. [DOI:10.1016/j.mechmat.2013.08.008]
31. [31] Hosseinzadeh M, Ghoreishi M, Narooei K. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone. Journal of the mechanical behavior of biomedical materials. 2016;59:393-403. [DOI:10.1016/j.jmbbm.2016.02.027]
32. [32] Baniasadi M, Maleki-Bigdeli M-A, Baghani M. Force and multiple-shape-recovery in shape-memory-polymers under finite deformation torsion-extension. Smart Materials and Structures. 2020;29(5):055011. [DOI:10.1088/1361-665X/ab78b4]
33. [33] Williams ML, Landel RF, Ferry JD. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society. 1955;77(14):3701-7. [DOI:10.1021/ja01619a008]
34. [34] Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology: process and product optimization using designed experiments: John Wiley & Sons; 2016.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.