Volume 22, Issue 7 (July 2022)                   Modares Mechanical Engineering 2022, 22(7): 461-471 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zakavi S J, Bakhshipour E. The Effect of Temperature and Bending Moments on the Strain Accumulation of Carbon Steel Piping Branch. Modares Mechanical Engineering 2022; 22 (7) :461-471
URL: http://mme.modares.ac.ir/article-15-58971-en.html
1- University of Mohaghegh Ardabili , zakavi@uma.ac.ir
2- University of Mohaghegh Ardabili
Abstract:   (852 Views)
In this paper, by using the Chaboche kinematic hardening model with the isotropic hardening law, the effect of temperature and bending moments is investigated on the strain accumulation behavior of carbon steel piping branch. Carbon steel branch junctions under internal pressure and temperature with dynamic bending moment are tested at five temperatures of 20, 50, 100, 150 and 200 ° C. The results obtained by numerical analysis show that the highest amount of ratcheting occurred near the branch junctions in the circumferential direction. The strain ratcheting occurred mainly because of dynamic moments and high temperatures. The results show that in all three samples, the amount of strain ratcheting increases with increasing of dynamic moment level and temperature. With increasing of the ratio of diameter to thickness in branch junctions, the onset of strain accumulation occurs at low moment levels. It can be concluded that initially, the rate of strain ratcheting is high and with the increase of loading cycles, this rate decreased due to the strain hardening phenomenon. The increase of strain ratcheting at high temperatures is due creep strain because of high temperature and mainly accumulated plastic strain under dynamic bending moments because of cyclic plasticity.
Full-Text [PDF 846 kb]   (383 Downloads)    
Article Type: Original Research | Subject: Plasticity
Received: 2022/01/24 | Accepted: 2022/04/4 | Published: 2022/07/1

References
1. [1] Kaae, J.L., High-temperature Low-cycle fatigue of Alloy 800H. Int. J. of Fatigue, 31:332-340, 2009. [DOI:10.1016/j.ijfatigue.2008.08.002]
2. [2] Zhu, J., Xu. Chen, F. Xue, W. Yu, Beading Ratcheting tests of Z2CND18.12 Stainless Steel. Int. J. of Fatigue, 35: 16-22,2012. [DOI:10.1016/j.ijfatigue.2011.04.008]
3. [3] Kreethi, R., Mondal, A.K., Dutta, K., Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions. Materials Science and Engineering: A, 679: 66-74, 2017. [DOI:10.1016/j.msea.2016.10.019]
4. [4] Hang, Li., K. Guozheng, Yu. Chao and L. Yujie, Experimental investigation on temperature-dependent uniaxial ratcheting of AZ31B magnesium alloy. Int. J. of Fatigue, Vol. 120, pp. 33-45, 2019. [DOI:10.1016/j.ijfatigue.2018.10.020]
5. [5] Karvan, P., A. Varvani-Farahani, Ratcheting assessment of Visco-Plastic alloys at ambient temperature by means of the A-V and O-W hardening rate frameworks. Mechanics of Materials, Vol. 130, pp. 95-104, 2019. [DOI:10.1016/j.mechmat.2019.01.007]
6. [6] Yang., J. Guozheng Kang, Yujie Liu, Kaijuan Chen AND Qianhua Kan, Experimental study on rate-dependent uniaxial whole-life ratchetting and fatigue behavior of polyamide 6. International Journal of Fatigue, Vol. 132, 2019. [DOI:10.1016/j.ijfatigue.2019.105402]
7. [7] Tasavori M, Zehsaz M, Vakili Tahami F, Ratcheting assessment in the tubesheets of heat exchangers using the nonlinear isotropic/kinematic hardening model,International Journal of Pressure Vessels and Piping,2020: 183 [DOI:10.1016/j.ijpvp.2020.104103]
8. [8] Prerna Mishra, N.C. Santhi Srinivas, Vakil Singh,.Ratcheting fatigue of modified 9Cr-1Mo steel and Inconel alloy 617 at ambient temperature: Effect of uniform plastic strain, Materials Letters, 2022: 314 [DOI:10.1016/j.matlet.2022.131916]
9. [9] K. Yahiaoui, D. N. Moreton, D. G. Moffat, Response and cyclic strain accumulation of pressurized piping elbows under dynamic out-of-plane bending, Int. J. of strain analysis, pp. 153-166, 1996 [DOI:10.1243/03093247V312153]
10. [10 Khodadadi B, Zakavi SJ. Study on strain accumulations of plain carbon steel elbows subjected to dynamic out of plane bending by the chaboche model with isotropic hardening. MSc. Thesis Mech. Eng., Fac. Eng. Univ. mohaghegh ardabill, 2017, n.d.
11. [11] S. J. Zakavi, Y. Aghaei, The ratcheting behavior of Carbon Steel piping elbows under cyclic bending moments and temperature, the Brazilian society of Mechanical Sciences and Engineering, pp. 42-436, 2020. [DOI:10.1007/s40430-020-02521-0]
12. [12] Yahiaoui, K, Moffat, D.G. and Moreton, D.N., Single Frequency Seismic Loading Tests on Pressurized Branch Pipe Intersections Machined from Solid. The Journal of Strain Analysis for Engineering Design, 28, 197-207, 1993 [DOI:10.1243/03093247V283197]
13. [13] JL. Chaboche, Time independent constitutive theories for cyclic plasticity. Int J Plast; pp. 149-188, 1986. [DOI:10.1016/0749-6419(86)90010-0]
14. [14] JL. Chaboche, On some modifications of kinematic hardening to improve the description of ratcheting effects. Int J Plast; pp. 661-678, 1991. [DOI:10.1016/0749-6419(91)90050-9]
15. [15] J. Lemaitre, J. L. Chaboche, Mechanics of Solid Materials. Cambridge University Press, 584 P, 1994.
16. [16] M. Mardomi Bashir, S. J. Zakavi, Evaluatin of the ratcheting behaviour of carbon Steel pressurized piping elbows by chaboche cyclic plasticity model, 25 th Annual international conference on mechanical engineering, 2017.
17. [17] S. J. Zakavi, B. Shiralivand, M. Nourbakhsh, Evaluation of combined hardening model in ratcheting behavior of pressurized piping elbows subjected to in-plane moments, JCARME, 2017; 7(1) :57-71.
18. [18] S. J. Zakavi, M. Zehsaz, MR. Eslami, The ratchetting behavior of pressurized plain pipework subjected to cyclic bending moment with the combined hardening model. Nuclear Engineering and Design, 240(4), 726-737, 2010. [DOI:10.1016/j.nucengdes.2009.12.012]
19. [19] Zakavi S J, Nourbakhsh M. The effect of Basic factors on strain accumulation of pressurized piping elbows under dynamic moments. Modares Mechanical Engineering. 2015; 15 (5) :412-418
20. [20] Zakavi S, Mohammadi Asl H, Babaee D. Study of Ratcheting Behavior of 304L Stainless Steel Branch Pipes by Using Chaboche and Combined Hardening Models. Modares Mechanical Engineering. 2019; 19 (9) :2193-2201
21. [21] Zakavi S J, Malekzadeh B, shayestehnia E, shiralivand B. Evaluation of several hardening models in the ratcheting behavior of piping branch with Different diameter/thickness ratios. Modares Mechanical Engineering. 2018; 18 (2) :201-208
22. [22] Zakavi S J, Rahimi A., The Effect of Dynamic Loading on the Ratcheting Behavior of Pressurized Piping Branch. Tabriz Un. J. of Mecanical Eng. 2015., 45(3) :63-68.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.