Volume 22, Issue 7 (July 2022)                   Modares Mechanical Engineering 2022, 22(7): 485-496 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khademi M, Moslemi Naeini H, Mirnia M J. Prediction of 6061-T6 Aluminum Fracture Behavior Using the Extended GTN Criterion. Modares Mechanical Engineering 2022; 22 (7) :485-496
URL: http://mme.modares.ac.ir/article-15-59436-en.html
1- Tarbiat Modares University
2- Professor of Mechanical Engineering , moslemi@modares.ac.ir
3- Associate Professor, Babol Noshirvani University of Technology (BNUT)
Abstract:   (952 Views)
In this paper, fracture prediction accuracy was evaluated by the GTN ductile fracture criterion and the effect of its evolution. To investigate the stress states, three calibration tests, including uniaxial tension, plane strain tension, and In-plane shear tension, were used to calibrate the failure criterion and determine the accuracy of fracture prediction. For simulation of the fracture behavior in Aluminum 6061-T6, the GTN ductile fracture criterion was calibrated using the combined experimental-simulation method. ABAQUS software was used to simulate the forming process, and fracture criteria were implemented to the software by the VUMAT subroutine. The force-displacement values and the fracture displacement in the experimental tests were used to validate the numerical results and evaluate the fracture criterion accuracy. According to the results, calibration using uniaxial tension and In-plane shear tension tests predicts failure with an average error of 6.17%. While the original GTN criterion cannot predict the fracture of the In-plane shear tension test, the error value in the plane strain tension test reaches 24%. A U- bending test was performed to investigate the fracture behavior of Aluminium 6061-T6 sheets and validate the calibrated fracture criterion in a more complex process other than tension tests. The Extended GTN criterion was found to predict the onset of fracture in the U-bending process with an error of 3%.
Full-Text [PDF 1117 kb]   (511 Downloads)    
Article Type: Original Research | Subject: Damage Mechanics
Received: 2022/02/8 | Accepted: 2022/04/3 | Published: 2022/07/1

1. Sanford, R., Principles of Fracture Mechanics. 2003. Upper Saddle River: Prentice Hall.
2. Dieter, G.E. and D.J. Bacon, Mechanical metallurgy. Vol. 3. 1986: McGraw-hill New York.
3. Hosford, W.F. and R.M. Caddell, Metal forming: mechanics and metallurgy. 2011: Cambridge University Press. [DOI:10.1017/CBO9780511976940]
4. Anderson, T.L., Fracture mechanics: fundamentals and applications. 2017: CRC press. [DOI:10.1201/9781315370293]
5. Lemaitre, J., A continuous damage mechanics model for ductile fracture. Journal of engineering materials and technology, 1985. 107(1): p. 83-89. [DOI:10.1115/1.3225775]
6. Iraj, N.V., An Investigation on the limit drawing using GTN damage model in tube drawing process, in Mechanical Engineering. 2017, Ferdowsi University of Mashhad: Iran. p. 99.
7. Gatea, S., et al., Modelling of ductile fracture in single point incremental forming using a modified GTN model. Engineering Fracture Mechanics, 2017. 186: p. 59-79. [DOI:10.1016/j.engfracmech.2017.09.021]
8. Teng, B., W. Wang, and Y. Xu, Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model. Engineering Fracture Mechanics, 2017. 186: p. 242-254. [DOI:10.1016/j.engfracmech.2017.10.014]
9. Thuillier, S., N. Le Maoût, and P.-Y. Manach, Influence of ductile damage on the bending behaviour of aluminium alloy thin sheets. Materials & Design, 2011. 32(4): p. 2049-2057. [DOI:10.1016/j.matdes.2010.11.050]
10. Wu, H., et al., Mechanism of increasing spinnability by multi-pass spinning forming-Analysis of damage evolution using a modified GTN model. International Journal of Mechanical Sciences, 2019. 159: p. 1-19. [DOI:10.1016/j.ijmecsci.2019.05.030]
11. Gholipour, H., F. Biglari, and K. Nikbin, Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests. International Journal of Mechanical Sciences, 2019. 164: p. 105170. [DOI:10.1016/j.ijmecsci.2019.105170]
12. Sun, Q., Y. Lu, and J. Chen, Identification of material parameters of a shear modified GTN damage model by small punch test. International Journal of Fracture, 2020: p. 1-11. [DOI:10.1007/s10704-020-00428-4]
13. Lou, Y. and H. Huh, Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. International Journal of Solids and Structures, 2013. 50(2): p. 447-455. [DOI:10.1016/j.ijsolstr.2012.10.007]
14. Permeh, M., Prediction of Failure in High Temperature Using GTN Model and Finite Element Simulation in AA 5083 Sheets, in Manufacturing Engineering. 2015, Babol Noshirvani University of Technology: Iran. p. 100.
15. Abbasi, M., et al., Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank. Computational Materials Science, 2012. 53(1): p. 368-376. [DOI:10.1016/j.commatsci.2011.08.020]
16. Bettaieb, M.B., et al., On the numerical integration of an advanced Gurson model. International journal for numerical methods in engineering, 2011. 85(8): p. 1049-1072. [DOI:10.1002/nme.3010]
17. Cao, T.-S., et al., A comparative study of three ductile damage approaches for fracture prediction in cold forming processes. Journal of Materials Processing Technology, 2015. 216: p. 385-404. [DOI:10.1016/j.jmatprotec.2014.10.009]
18. Malcher, L., F.A. Pires, and J.C. De Sá, An extended GTN model for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2014. 54: p. 193-228. [DOI:10.1016/j.ijplas.2013.08.015]
19. Malcher, L., et al., Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model. International Journal of Mechanical Sciences, 2013. 75: p. 407-422. [DOI:10.1016/j.ijmecsci.2013.08.008]
20. Malcher, L., F.A. Pires, and J.C. De Sá, An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 2012. 30: p. 81-115. [DOI:10.1016/j.ijplas.2011.10.005]
21. Mirnia, M.J. and M. Shamsari, Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology, 2017. 244: p. 17-43. [DOI:10.1016/j.jmatprotec.2017.01.029]
22. Shen, Y., et al., Experimental and numerical characterization of anisotropic damage evolution of forged Al6061-T6 alloy. Procedia Engineering, 2011. 10: p. 3429-3434. [DOI:10.1016/j.proeng.2011.04.565]
23. Le Maoût, N., S. Thuillier, and P.-Y. Manach, Aluminum alloy damage evolution for different strain paths-Application to hemming process. Engineering Fracture Mechanics, 2009. 76(9): p. 1202-1214. [DOI:10.1016/j.engfracmech.2009.01.018]
24. Talebi-Ghadikolaee, H., et al., Fracture analysis on U-bending of AA6061 aluminum alloy sheet using phenomenological ductile fracture criteria. Thin-Walled Structures, 2020. 148: p. 106566. [DOI:10.1016/j.tws.2019.106566]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.