Volume 22, Issue 12 (December 2022)                   Modares Mechanical Engineering 2022, 22(12): 727-736 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

bagherpoor F, Sadeghi A, Oskouei K. Experimental and Numerical Analysis of Discontinuous Flow of Molten Sn in an Electromagnetic Pump and Investigation of Effective Parameters on Flow Geometry. Modares Mechanical Engineering 2022; 22 (12) :727-736
URL: http://mme.modares.ac.ir/article-15-59669-en.html
1- Ph.D. student
2- Assistant Professor at University of Tehran , alireza.sadeghi@ut.ac.ir
3- assistant professor
Abstract:   (1296 Views)
Melt conductivity of metals makes it possible to apply force directly to the melt by electromagnetic forces. The movement of melt performs without using any mechanical parts, and it also reduces the risk of corrosion of metal parts in contact with molten metals. In this research, a discontinuous molten flow is generated from a designed nozzle, and after a cooling process, the droplets convert to metal powders or granules. In this pump, drop-on-demand formation is based on eddy currents and alternating electromagnetic forces inside the melt. The most important effective parameters in the induction coil are the current, voltage, and frequency. In order to control the operation of the pump, it is necessary to understand its effects and to find the optimal conditions. The results of studies show that the most effective parameter affecting the number of drops released per unit of time is the voltage of the coil and then the frequency and finally the pulse on time. In this project, by studying various effective parameters, a device was designed to generate molten droplets. The results showed at the voltage of 280 v, pulse-On time of 1.5 ms, and also by increasing frequency from 5 to 20 Hz, the number of droplets increased from 144 to 246 drops. The highest number of drop outputs occurred at the frequency of 20 Hz, Voltage of 280 v, and pulse-On time of 1.5 milliseconds.
 
Full-Text [PDF 1318 kb]   (680 Downloads)    
Article Type: Qualitative Research | Subject: Build add-on
Received: 2022/02/17 | Accepted: 2022/07/9 | Published: 2022/12/1

References
1. [1] V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, "Magnetohydrodynamic Drop-on-Demand Liquid Metal Additive Manufacturing: System Overview and Modelling," Proc. 5th Int. Conf. Fluid Flow, Heat Mass Transf., no. 155, pp. 1-6, 2018, doi: 10.11159/ffhmt18.155. [DOI:10.11159/ffhmt18.155]
2. [2] J. Luo, L. H. Qi, J. M. Zhou, X. H. Hou, and H. J. Li, "Modeling and characterization of metal droplets generation by using a pneumatic drop-on-demand generator," J. Mater. Process. Technol., vol. 212, no. 3, pp. 718-726, 2012, doi: 10.1016/j.jmatprotec.2011.04.014. [DOI:10.1016/j.jmatprotec.2011.04.014]
3. [3] S. Y. Zhong, L. H. Qi, W. Xiong, J. Luo, and Q. X. Xu, "Research on mechanism of generating aluminum droplets smaller than the nozzle diameter by pneumatic drop-on-demand technology," Int. J. Adv. Manuf. Technol., vol. 93, no. 5-8, pp. 1771-1780, 2017, doi: 10.1007/s00170-017-0484-x. [DOI:10.1007/s00170-017-0484-x]
4. [4] U. Daalkhaijav, O. D. Yirmibesoglu, S. Walker, and Y. Mengüç, "Rheological Modification of Liquid Metal for Additive Manufacturing of Stretchable Electronics," Adv. Mater. Technol., vol. 3, no. 4, pp. 1-9, 2018, doi: 10.1002/admt.201700351. [DOI:10.1002/admt.201700351]
5. [5] L. Wang and J. Liu, "Liquid phase 3D printing for quickly manufacturing conductive metal objects with low melting point alloy ink," Sci. China Technol. Sci., vol. 57, no. 9, pp. 1721-1728, 2014, doi: 10.1007/s11431-014-5583-4. [DOI:10.1007/s11431-014-5583-4]
6. [6] T. Ottnad, M. Kagerer, F. Irlinger, and T. C. Lueth, "Modification and further development of a drop on demand printhead for wax enabling future 3D-printing and rapid prototyping," IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, AIM, pp. 117-122, 2012, doi: 10.1109/AIM.2012.6265958. [DOI:10.1109/AIM.2012.6265958]
7. [7] M. Suter, E. Weingärtner, and K. Wegener, "MHD printhead for additive manufacturing of metals," Procedia CIRP, vol. 2, no. 1, pp. 102-106, 2012, doi: 10.1016/j.procir.2012.05.049. [DOI:10.1016/j.procir.2012.05.049]
8. [8] S. I. Moqadam, L. Mädler, and N. Ellendt, "A high temperature drop-on-demand droplet generator for metallic melts," Micromachines, vol. 10, no. 7, pp. 1-12, 2019, doi: 10.3390/mi10070477. [DOI:10.3390/mi10070477]
9. [9] S. Y. Zhong, L. H. Qi, J. Luo, H. S. Zuo, X. H. Hou, and H. J. Li, "Effect of process parameters on copper droplet ejecting by pneumatic drop-on-demand technology," J. Mater. Process. Technol., vol. 214, no. 12, pp. 3089-3097, 2014, doi: 10.1016/j.jmatprotec.2014.07.012. [DOI:10.1016/j.jmatprotec.2014.07.012]
10. [10] H. P. Li, H. J. Li, L. H. Qi, J. Luo, and H. S. Zuo, "Simulation on deposition and solidification processes of 7075 Al alloy droplets in 3D printing technology," Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 6, pp. 1836-1843, 2014, doi: 10.1016/S1003-6326(14)63261-1. [DOI:10.1016/S1003-6326(14)63261-1]
11. [11] S. Vader, Z. Vader, I. H. Karampelas, and E. P. Furlani, "Advances in Magnetohydrodynamic Liquid Metal Jet Printing," no. 716, pp. 2-5.
12. [12] J. Jang and S. S. Lee, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensors Actuators A Phys., vol. 80, no. 1, pp. 84-89, Mar. 2000, doi: 10.1016/S0924-4247(99)00302-7. [DOI:10.1016/S0924-4247(99)00302-7]
13. [13] I. Martynovich, "Magnetohydrodynamic Pump Work Simulation," 2018 Int. Russ. Autom. Conf., no. 5, pp. 1-5, 2018. [DOI:10.1109/RUSAUTOCON.2018.8501760]
14. [14] D. J. Hartl, G. J. Frank, and J. W. Baur, "Embedded magnetohydrodynamic liquid metal thermal transport : validated analysis and design optimization," 2016, doi: 10.1177/1045389X16657429. [DOI:10.1177/1045389X16657429]
15. [15] کارمزدی، محسن و شفیعی، محمدبهشاد و افشین، حسین،1397،بررسی حرکت توده مایع رسانا جهت شناسایی عملکرد میکروپمپ الکترومغناطیسی،26th Annual Conference of Mechanical Engineering،Semnan،https://civilica.com/doc/817102." 2018.
16. [16] Z. Luo, Z. Li, X. Wang, and W. Li, "Fabrication of solder balls via electromagnetic jetting," NEMS 2018 - 13th Annu. IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., pp. 519-522, 2018, doi: 10.1109/NEMS.2018.8556903. [DOI:10.1109/NEMS.2018.8556903]
17. [17] Z. Luo, X. Wang, L. Wang, D. Sun, and Z. Li, "Drop-on-demand electromagnetic printing of metallic droplets," Mater. Lett., vol. 188, no. August 2016, pp. 184-187, 2017, doi: 10.1016/j.matlet.2016.11.021. [DOI:10.1016/j.matlet.2016.11.021]
18. [18] M. W. Lee, D. K. Kang, N. Y. Kim, H. Y. Kim, S. C. James, and S. S. Yoon, "A study of ejection modes for pulsed-DC electrohydrodynamic inkjet printing," J. Aerosol Sci., vol. 46, pp. 1-6, 2012, doi: 10.1016/j.jaerosci.2011.11.002. [DOI:10.1016/j.jaerosci.2011.11.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.