Volume 22, Issue 9 (September 2022)                   Modares Mechanical Engineering 2022, 22(9): 579-590 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jafari S, Alavi Nia َ. Experimental Study of the Effect of Different Factors on the Performance of the Gas Gun Device and Numerical Study of the Rupture Pressure Estimate in the Rupture Disk. Modares Mechanical Engineering 2022; 22 (9) :579-590
URL: http://mme.modares.ac.ir/article-15-60348-en.html
1- PhD student, Faculty of Engineering, Bu Ali Sina University, Hamadan
2- Professor, Department of Mechanics, Bu Ali Sina University, Hamadan , alavi495@basu.ac.ir
Abstract:   (1543 Views)
In this study, the purpose is to evaluate the effective factors in the increase of projectile velocity in the gas-gun device. At first, the effect of various factors such as the shape and dimensions of the sabot, groove depth and the shape of the Rupture Disk holder, the path of the projectile from the moment of movement to the exit from the tube, and the type of gas used for launching are investigated. In each step of the experiments, a factor is evaluated and its effect on improving the performance of the gas-gun device is investigated. Based on the results of the study of effective factors the velocity of the projectile the shape of the sabot, and the projectile movement path with a 24.12 and 20.81% increase in projectile velocity respectively, the maximum and the type of gas used with 2.99% increase in projectile velocity had the minimum effect on the performance of the gas-gun device. In the second part of the present study, using the finite element method by LS-Dyna, the required pressure and rupture shape of the Rupture Disk in different grooves were investigated and compared with the experimental results. The shape of the rupture and the pressure required to rupture the Rupture Disk from the numerical method are in good agreement with the experimental results.
 
Full-Text [PDF 1193 kb]   (820 Downloads)    
Article Type: Original Research | Subject: Impact Mechanics
Received: 2022/03/19 | Accepted: 2022/05/14 | Published: 2022/09/1

References
1. [1]-Hill R. The Mathematical Theory of Plasticity. Chapter 12, Oxford University Press, New York.:1950.
2. [2]-Henderson RW. An Analytical Method for the Design of Scored Rupture Diaphragms for Use in Shock and Gun Tunnels. John Hopkins Univ. Applied Physics Laboratory, Technical memorandum, Maryland: 1967. [DOI:10.21236/AD0675290]
3. [3]-Wang NM, Shammamy MR. On The Plastic Bulging of a Circular Diaphragm by Hydrostatic Pressure. Journal of the Mechanics and Physics of Solids. 1696;17(1): 43-61. [DOI:10.1016/0022-5096(69)90012-X]
4. [4]-Malakhov NN, Kosolapov AI, Ol'khovskii NE. Maximum Bursting Pressure of Rupture Disks. Chemical and Petroleum Engineering. 1970; 6(12):1048-1050. [DOI:10.1007/BF01151642]
5. [5]-Stepanov AP. Rupture Disks. Chemical and Petroleum Engineering.1976; 12(4):386-387. [DOI:10.1007/BF01161331]
6. [6]-Ilahi MF, Parmar A, Mellor PB. Hydrostatic Bulging of a Circular Aluminum Diaphragm. Journal of the Mechanics and Physics of Solids. 1981; 23(4):221-227. [DOI:10.1016/0020-7403(81)90047-3]
7. [7]-Ilahi MF. Parmar A, Mellor PB. Hydrostatic Bulging of a Circular Soft Brass Diaphragm, International Journal of Mechanical Sciences. 1985; 27(5):275-280. [DOI:10.1016/0020-7403(85)90017-7]
8. [8]-Murty DVR. Finite Element Analysis of Rupture Disc. Scientist E I, Design & Engineering Division, Indian Institute of Chemical Technology, India, Tarnaka, 2006.
9. [9]-Tretjakovas J, Kacianauskas, Simkevicius C. FE Simulation of Rupture of Diaphragm with Initiated Defect. Vilnius Gediminas Technical University. 2006; 62(6).
10. [10]-Dryer FL, Chaos M, Zhao Z, Stein JN, Alpert JY, Homer CJ. Spontaneous Ignition of Pressurized Release of Hydrogen and Natural Gas into Air. Combustion Science and Technology. 2007; 179:663e94. [DOI:10.1080/00102200600713583]
11. [11]-Cherouat A, Ayadi M, Mezghani N, Slimani F. Experimental and Finite Element Modelling of Thin Sheet Hydroforming Processes. International Journal of Material Forming. 2008; 1(1):313-316. [DOI:10.1007/s12289-008-0339-y]
12. ]12[- خدارحمی ح و واحدی خ و لطفی ح، تحلیل تجربی و عددی اثر عمق شیار و تخمین فشار پارگی در دیافراگم های پاره شونده، مکانیک هوا فضا، 1391، دوره 8، شماره 1، صفحه 85 تا 98.
13. [13]-Javidrad F. And Rahmati, R. An Integrated Re- Engineering Plan for the Manufacturing of Aerospace Components. Materials and Design. 2009; 30(5):1524-1532. [DOI:10.1016/j.matdes.2008.07.055]
14. [14]-Miller D. Getting the Most Out of Your Rupture Disc. Chemical Engineering. 2009; 116(3):45-47.
15. [15]-Gao GF, Wang GD, Ding XW, Chen JJ, Limit Pressure of Rupture Discs Found on Tensile Instability Condition. Advanced Material Research. 2010; 97(101):296-300. [DOI:10.4028/www.scientific.net/AMR.97-101.296]
16. [16]-Jeong JY, Lee J, Yeom S, Choi W, Kim TG, Hong SC, Ryu M, Kim H, Lee SB. A Study on The Grooving Process of a Cross-Scored Rupture Disc. International Journal of Precision Engineering and Manufacturing. 2012; 13(2):219-227. [DOI:10.1007/s12541-012-0027-1]
17. [17]-Jeong JY, Jo W, Kim H, Baek SH, Lee SB. Structural Analysis on The Superficial Grooving Stainless-Steel Thin-Plate Rupture Discs. International Journal of Precision Engineering and Manufacturing.2014;15(6):1035-1040. [DOI:10.1007/s12541-014-0433-7]
18. [18]-Yan ZF. Numerical Study on Explosion Performance and Influential Factors of the Metallic Rupture Discs. Dalian University of Technology. 2012; 45-51.
19. [19]-Duan Q, Xiao H, Gao W, Gong L, Wang Q, Sun J. Experimental Study on Spontaneous Ignition and Flame Propagation of High-Pressure Hydrogen Release Via a Tube into Air. Fuel. 2016; 181:811e9. [DOI:10.1016/j.fuel.2016.05.066]
20. [20]-Ando T, Asahara M, Saburi T, Kubota S, Miyasaka T. Propagation Behavior of Self-Ignited Flame on High-Pressure Hydrogen Flow in A Tube. Proceedings of the twelfth international symposium on hazards, prevention and mitigation of industrial explosions. 2018:1-10.
21. [21]-Xiangwei K. Experimental and Finite Element Optimization Analysis on Hydroforming Process of Rupture Disk. Procedia Manufacturing. 2018; 15:892-898 [DOI:10.1016/j.promfg.2018.07.408]
22. [22]-Makoto A, Tei S, Toshiki A, Yoshiaki T, Takeshi M, Shiro K. Self-Ignited Flame Behavior of High-Pressure Hydrogen Release by Rupture Disk through a Long Tube. International Journal of Hydrogen Energy. (2021); 46:13484-13500. [DOI:10.1016/j.ijhydene.2021.01.097]
23. [23]- Zhu H, Xu W, Luo Z, Zheng H. Finite Element Analysis on the Temperature- Dependent Burst Behavior of Domed 316L Austenitic Stainless Steel Rupture Disc. Metals. 2020; 10(2):232. [DOI:10.3390/met10020232]
24. [24]- Mohebbi M, Panahizadeh V, Hoseinpour Gollo M. Investigating the effect of nonlinear strain path on the mechanical properties of sheet metal to predict burst pressure of composite Rupture disc. Iranian Journal of Manufacturing Engineering. (2021); 8(4):1- 11.
25. [25]-ASTM-E1251. Standard Test Method for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry. (2017).
26. [26]-LS-DYNA Keyword User's Manual, In Version 971, Livemore Software Technology Corporation (LSTC), California, USA, 2007.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.